FFmpeg  4.3.7
cinepakenc.c
Go to the documentation of this file.
1 /*
2  * Cinepak encoder (c) 2011 Tomas Härdin
3  * http://titan.codemill.se/~tomhar/cinepakenc.patch
4  *
5  * Fixes and improvements, vintage decoders compatibility
6  * (c) 2013, 2014 Rl, Aetey Global Technologies AB
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included
16  * in all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 /*
28  * TODO:
29  * - optimize: color space conversion (move conversion to libswscale), ...
30  * MAYBE:
31  * - "optimally" split the frame into several non-regular areas
32  * using a separate codebook pair for each area and approximating
33  * the area by several rectangular strips (generally not full width ones)
34  * (use quadtree splitting? a simple fixed-granularity grid?)
35  */
36 
37 #include <string.h>
38 
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/internal.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/lfg.h"
44 #include "libavutil/opt.h"
45 
46 #include "avcodec.h"
47 #include "elbg.h"
48 #include "internal.h"
49 
50 #define CVID_HEADER_SIZE 10
51 #define STRIP_HEADER_SIZE 12
52 #define CHUNK_HEADER_SIZE 4
53 
54 #define MB_SIZE 4 //4x4 MBs
55 #define MB_AREA (MB_SIZE * MB_SIZE)
56 
57 #define VECTOR_MAX 6 // six or four entries per vector depending on format
58 #define CODEBOOK_MAX 256 // size of a codebook
59 
60 #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
61 #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious)
62 // MAX_STRIPS limits the maximum quality you can reach
63 // when you want high quality on high resolutions,
64 // MIN_STRIPS limits the minimum efficiently encodable bit rate
65 // on low resolutions
66 // the numbers are only used for brute force optimization for the first frame,
67 // for the following frames they are adaptively readjusted
68 // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
69 // of strips, currently 32
70 
71 typedef enum CinepakMode {
75 
77 } CinepakMode;
78 
79 typedef enum mb_encoding {
83 
85 } mb_encoding;
86 
87 typedef struct mb_info {
88  int v1_vector; // index into v1 codebook
89  int v1_error; // error when using V1 encoding
90  int v4_vector[4]; // indices into v4 codebook
91  int v4_error; // error when using V4 encoding
92  int skip_error; // error when block is skipped (aka copied from last frame)
93  mb_encoding best_encoding; // last result from calculate_mode_score()
94 } mb_info;
95 
96 typedef struct strip_info {
97  int v1_codebook[CODEBOOK_MAX * VECTOR_MAX];
98  int v4_codebook[CODEBOOK_MAX * VECTOR_MAX];
99  int v1_size;
100  int v4_size;
102 } strip_info;
103 
104 typedef struct CinepakEncContext {
105  const AVClass *class;
107  unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
113  int w, h;
115  int curframe, keyint;
117  uint64_t lambda;
120  mb_info *mb; // MB RD state
121  int min_strips; // the current limit
122  int max_strips; // the current limit
123  // options
130 
131 #define OFFSET(x) offsetof(CinepakEncContext, x)
132 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
133 static const AVOption options[] = {
134  { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
135  OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE },
136  { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder",
137  OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
138  { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
139  OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE },
140  { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
141  OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE },
142  { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
143  OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE },
144  { NULL },
145 };
146 
147 static const AVClass cinepak_class = {
148  .class_name = "cinepak",
149  .item_name = av_default_item_name,
150  .option = options,
151  .version = LIBAVUTIL_VERSION_INT,
152 };
153 
155 {
156  CinepakEncContext *s = avctx->priv_data;
157  int x, mb_count, strip_buf_size, frame_buf_size;
158 
159  if (avctx->width & 3 || avctx->height & 3) {
160  av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
161  avctx->width, avctx->height);
162  return AVERROR(EINVAL);
163  }
164 
165  if (s->min_min_strips > s->max_max_strips) {
166  av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
168  return AVERROR(EINVAL);
169  }
170 
171  if (!(s->last_frame = av_frame_alloc()))
172  return AVERROR(ENOMEM);
173  if (!(s->best_frame = av_frame_alloc()))
174  goto enomem;
175  if (!(s->scratch_frame = av_frame_alloc()))
176  goto enomem;
177  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
178  if (!(s->input_frame = av_frame_alloc()))
179  goto enomem;
180 
181  if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
182  goto enomem;
183 
184  if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
185  goto enomem;
186 
187  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
188  if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
189  goto enomem;
190 
191  mb_count = avctx->width * avctx->height / MB_AREA;
192 
193  // the largest possible chunk is 0x31 with all MBs encoded in V4 mode
194  // and full codebooks being replaced in INTER mode,
195  // which is 34 bits per MB
196  // and 2*256 extra flag bits per strip
197  strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
198 
199  frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
200 
201  if (!(s->strip_buf = av_malloc(strip_buf_size)))
202  goto enomem;
203 
204  if (!(s->frame_buf = av_malloc(frame_buf_size)))
205  goto enomem;
206 
207  if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
208  goto enomem;
209 
210  av_lfg_init(&s->randctx, 1);
211  s->avctx = avctx;
212  s->w = avctx->width;
213  s->h = avctx->height;
214  s->frame_buf_size = frame_buf_size;
215  s->curframe = 0;
216  s->keyint = avctx->keyint_min;
217  s->pix_fmt = avctx->pix_fmt;
218 
219  // set up AVFrames
220  s->last_frame->data[0] = s->pict_bufs[0];
221  s->last_frame->linesize[0] = s->w;
222  s->best_frame->data[0] = s->pict_bufs[1];
223  s->best_frame->linesize[0] = s->w;
224  s->scratch_frame->data[0] = s->pict_bufs[2];
225  s->scratch_frame->linesize[0] = s->w;
226 
227  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
228  s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h;
229  s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2);
230  s->last_frame->linesize[1] =
231  s->last_frame->linesize[2] = s->w >> 1;
232 
233  s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h;
234  s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2);
235  s->best_frame->linesize[1] =
236  s->best_frame->linesize[2] = s->w >> 1;
237 
238  s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h;
239  s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
240  s->scratch_frame->linesize[1] =
241  s->scratch_frame->linesize[2] = s->w >> 1;
242 
243  s->input_frame->data[0] = s->pict_bufs[3];
244  s->input_frame->linesize[0] = s->w;
245  s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h;
246  s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2);
247  s->input_frame->linesize[1] =
248  s->input_frame->linesize[2] = s->w >> 1;
249  }
250 
251  s->min_strips = s->min_min_strips;
252  s->max_strips = s->max_max_strips;
253 
254  return 0;
255 
256 enomem:
260  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
264  av_freep(&s->strip_buf);
265  av_freep(&s->frame_buf);
266  av_freep(&s->mb);
267 
268  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
269  av_freep(&s->pict_bufs[x]);
270 
271  return AVERROR(ENOMEM);
272 }
273 
275  strip_info *info, int report,
276  int *training_set_v1_shrunk,
277  int *training_set_v4_shrunk)
278 {
279  // score = FF_LAMBDA_SCALE * error + lambda * bits
280  int x;
281  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
282  int mb_count = s->w * h / MB_AREA;
283  mb_info *mb;
284  int64_t score1, score2, score3;
285  int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
286  (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
287  CHUNK_HEADER_SIZE) << 3;
288 
289  switch (info->mode) {
290  case MODE_V1_ONLY:
291  // one byte per MB
292  ret += s->lambda * 8 * mb_count;
293 
294  // while calculating we assume all blocks are ENC_V1
295  for (x = 0; x < mb_count; x++) {
296  mb = &s->mb[x];
297  ret += FF_LAMBDA_SCALE * mb->v1_error;
298  // this function is never called for report in MODE_V1_ONLY
299  // if (!report)
300  mb->best_encoding = ENC_V1;
301  }
302 
303  break;
304  case MODE_V1_V4:
305  // 9 or 33 bits per MB
306  if (report) {
307  // no moves between the corresponding training sets are allowed
308  *training_set_v1_shrunk = *training_set_v4_shrunk = 0;
309  for (x = 0; x < mb_count; x++) {
310  int mberr;
311  mb = &s->mb[x];
312  if (mb->best_encoding == ENC_V1)
313  score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
314  else
315  score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
316  ret += score1;
317  }
318  } else { // find best mode per block
319  for (x = 0; x < mb_count; x++) {
320  mb = &s->mb[x];
321  score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
322  score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
323 
324  if (score1 <= score2) {
325  ret += score1;
326  mb->best_encoding = ENC_V1;
327  } else {
328  ret += score2;
329  mb->best_encoding = ENC_V4;
330  }
331  }
332  }
333 
334  break;
335  case MODE_MC:
336  // 1, 10 or 34 bits per MB
337  if (report) {
338  int v1_shrunk = 0, v4_shrunk = 0;
339  for (x = 0; x < mb_count; x++) {
340  mb = &s->mb[x];
341  // it is OK to move blocks to ENC_SKIP here
342  // but not to any codebook encoding!
343  score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
344  if (mb->best_encoding == ENC_SKIP) {
345  ret += score1;
346  } else if (mb->best_encoding == ENC_V1) {
347  if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
348  mb->best_encoding = ENC_SKIP;
349  ++v1_shrunk;
350  ret += score1;
351  } else {
352  ret += score2;
353  }
354  } else {
355  if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
356  mb->best_encoding = ENC_SKIP;
357  ++v4_shrunk;
358  ret += score1;
359  } else {
360  ret += score3;
361  }
362  }
363  }
364  *training_set_v1_shrunk = v1_shrunk;
365  *training_set_v4_shrunk = v4_shrunk;
366  } else { // find best mode per block
367  for (x = 0; x < mb_count; x++) {
368  mb = &s->mb[x];
369  score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
370  score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
371  score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
372 
373  if (score1 <= score2 && score1 <= score3) {
374  ret += score1;
375  mb->best_encoding = ENC_SKIP;
376  } else if (score2 <= score3) {
377  ret += score2;
378  mb->best_encoding = ENC_V1;
379  } else {
380  ret += score3;
381  mb->best_encoding = ENC_V4;
382  }
383  }
384  }
385 
386  break;
387  }
388 
389  return ret;
390 }
391 
392 static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
393 {
394  buf[0] = chunk_type;
395  AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
396  return CHUNK_HEADER_SIZE;
397 }
398 
399 static int encode_codebook(CinepakEncContext *s, int *codebook, int size,
400  int chunk_type_yuv, int chunk_type_gray,
401  unsigned char *buf)
402 {
403  int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
404  int incremental_codebook_replacement_mode = 0; // hardcoded here,
405  // the compiler should notice that this is a constant -- rl
406 
407  ret = write_chunk_header(buf,
408  s->pix_fmt == AV_PIX_FMT_RGB24 ?
409  chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) :
410  chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
411  entry_size * size +
412  (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
413 
414  // we do codebook encoding according to the "intra" mode
415  // but we keep the "dead" code for reference in case we will want
416  // to use incremental codebook updates (which actually would give us
417  // "kind of" motion compensation, especially in 1 strip/frame case) -- rl
418  // (of course, the code will be not useful as-is)
419  if (incremental_codebook_replacement_mode) {
420  int flags = 0;
421  int flagsind;
422  for (x = 0; x < size; x++) {
423  if (flags == 0) {
424  flagsind = ret;
425  ret += 4;
426  flags = 0x80000000;
427  } else
428  flags = ((flags >> 1) | 0x80000000);
429  for (y = 0; y < entry_size; y++)
430  buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
431  if ((flags & 0xffffffff) == 0xffffffff) {
432  AV_WB32(&buf[flagsind], flags);
433  flags = 0;
434  }
435  }
436  if (flags)
437  AV_WB32(&buf[flagsind], flags);
438  } else
439  for (x = 0; x < size; x++)
440  for (y = 0; y < entry_size; y++)
441  buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
442 
443  return ret;
444 }
445 
446 // sets out to the sub picture starting at (x,y) in in
447 static void get_sub_picture(CinepakEncContext *s, int x, int y,
448  uint8_t * in_data[4], int in_linesize[4],
449  uint8_t *out_data[4], int out_linesize[4])
450 {
451  out_data[0] = in_data[0] + x + y * in_linesize[0];
452  out_linesize[0] = in_linesize[0];
453 
454  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
455  out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
456  out_linesize[1] = in_linesize[1];
457 
458  out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
459  out_linesize[2] = in_linesize[2];
460  }
461 }
462 
463 // decodes the V1 vector in mb into the 4x4 MB pointed to by data
465  int linesize[4], int v1_vector, strip_info *info)
466 {
467  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
468 
469  data[0][0] =
470  data[0][1] =
471  data[0][ linesize[0]] =
472  data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
473 
474  data[0][2] =
475  data[0][3] =
476  data[0][2 + linesize[0]] =
477  data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
478 
479  data[0][ 2 * linesize[0]] =
480  data[0][1 + 2 * linesize[0]] =
481  data[0][ 3 * linesize[0]] =
482  data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
483 
484  data[0][2 + 2 * linesize[0]] =
485  data[0][3 + 2 * linesize[0]] =
486  data[0][2 + 3 * linesize[0]] =
487  data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
488 
489  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
490  data[1][0] =
491  data[1][1] =
492  data[1][ linesize[1]] =
493  data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
494 
495  data[2][0] =
496  data[2][1] =
497  data[2][ linesize[2]] =
498  data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
499  }
500 }
501 
502 // decodes the V4 vectors in mb into the 4x4 MB pointed to by data
504  int linesize[4], int *v4_vector, strip_info *info)
505 {
506  int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
507 
508  for (i = y = 0; y < 4; y += 2) {
509  for (x = 0; x < 4; x += 2, i++) {
510  data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
511  data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
512  data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
513  data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
514 
515  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
516  data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
517  data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
518  }
519  }
520  }
521 }
522 
524  uint8_t *a_data[4], int a_linesize[4],
525  uint8_t *b_data[4], int b_linesize[4])
526 {
527  int y, p;
528 
529  for (y = 0; y < MB_SIZE; y++)
530  memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
531  MB_SIZE);
532 
533  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
534  for (p = 1; p <= 2; p++)
535  for (y = 0; y < MB_SIZE / 2; y++)
536  memcpy(a_data[p] + y * a_linesize[p],
537  b_data[p] + y * b_linesize[p],
538  MB_SIZE / 2);
539  }
540 }
541 
542 static int encode_mode(CinepakEncContext *s, int h,
543  uint8_t *scratch_data[4], int scratch_linesize[4],
544  uint8_t *last_data[4], int last_linesize[4],
545  strip_info *info, unsigned char *buf)
546 {
547  int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
548  int needs_extra_bit, should_write_temp;
549  uint32_t flags;
550  unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
551  mb_info *mb;
552  uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
553  int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
554 
555  // encode codebooks
556  ////// MacOS vintage decoder compatibility dictates the presence of
557  ////// the codebook chunk even when the codebook is empty - pretty dumb...
558  ////// and also the certain order of the codebook chunks -- rl
559  if (info->v4_size || !s->skip_empty_cb)
560  ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
561 
562  if (info->v1_size || !s->skip_empty_cb)
563  ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
564 
565  // update scratch picture
566  for (z = y = 0; y < h; y += MB_SIZE)
567  for (x = 0; x < s->w; x += MB_SIZE, z++) {
568  mb = &s->mb[z];
569 
570  get_sub_picture(s, x, y, scratch_data, scratch_linesize,
571  sub_scratch_data, sub_scratch_linesize);
572 
573  if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
574  get_sub_picture(s, x, y, last_data, last_linesize,
575  sub_last_data, sub_last_linesize);
576  copy_mb(s, sub_scratch_data, sub_scratch_linesize,
577  sub_last_data, sub_last_linesize);
578  } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
579  decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
580  mb->v1_vector, info);
581  else
582  decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
583  mb->v4_vector, info);
584  }
585 
586  switch (info->mode) {
587  case MODE_V1_ONLY:
588  ret += write_chunk_header(buf + ret, 0x32, mb_count);
589 
590  for (x = 0; x < mb_count; x++)
591  buf[ret++] = s->mb[x].v1_vector;
592 
593  break;
594  case MODE_V1_V4:
595  // remember header position
596  header_ofs = ret;
597  ret += CHUNK_HEADER_SIZE;
598 
599  for (x = 0; x < mb_count; x += 32) {
600  flags = 0;
601  for (y = x; y < FFMIN(x + 32, mb_count); y++)
602  if (s->mb[y].best_encoding == ENC_V4)
603  flags |= 1U << (31 - y + x);
604 
605  AV_WB32(&buf[ret], flags);
606  ret += 4;
607 
608  for (y = x; y < FFMIN(x + 32, mb_count); y++) {
609  mb = &s->mb[y];
610 
611  if (mb->best_encoding == ENC_V1)
612  buf[ret++] = mb->v1_vector;
613  else
614  for (z = 0; z < 4; z++)
615  buf[ret++] = mb->v4_vector[z];
616  }
617  }
618 
619  write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
620 
621  break;
622  case MODE_MC:
623  // remember header position
624  header_ofs = ret;
625  ret += CHUNK_HEADER_SIZE;
626  flags = bits = temp_size = 0;
627 
628  for (x = 0; x < mb_count; x++) {
629  mb = &s->mb[x];
630  flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++);
631  needs_extra_bit = 0;
632  should_write_temp = 0;
633 
634  if (mb->best_encoding != ENC_SKIP) {
635  if (bits < 32)
636  flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++);
637  else
638  needs_extra_bit = 1;
639  }
640 
641  if (bits == 32) {
642  AV_WB32(&buf[ret], flags);
643  ret += 4;
644  flags = bits = 0;
645 
646  if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
647  memcpy(&buf[ret], temp, temp_size);
648  ret += temp_size;
649  temp_size = 0;
650  } else
651  should_write_temp = 1;
652  }
653 
654  if (needs_extra_bit) {
655  flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31;
656  bits = 1;
657  }
658 
659  if (mb->best_encoding == ENC_V1)
660  temp[temp_size++] = mb->v1_vector;
661  else if (mb->best_encoding == ENC_V4)
662  for (z = 0; z < 4; z++)
663  temp[temp_size++] = mb->v4_vector[z];
664 
665  if (should_write_temp) {
666  memcpy(&buf[ret], temp, temp_size);
667  ret += temp_size;
668  temp_size = 0;
669  }
670  }
671 
672  if (bits > 0) {
673  AV_WB32(&buf[ret], flags);
674  ret += 4;
675  memcpy(&buf[ret], temp, temp_size);
676  ret += temp_size;
677  }
678 
679  write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
680 
681  break;
682  }
683 
684  return ret;
685 }
686 
687 // computes distortion of 4x4 MB in b compared to a
689  uint8_t *a_data[4], int a_linesize[4],
690  uint8_t *b_data[4], int b_linesize[4])
691 {
692  int x, y, p, d, ret = 0;
693 
694  for (y = 0; y < MB_SIZE; y++)
695  for (x = 0; x < MB_SIZE; x++) {
696  d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
697  ret += d * d;
698  }
699 
700  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
701  for (p = 1; p <= 2; p++) {
702  for (y = 0; y < MB_SIZE / 2; y++)
703  for (x = 0; x < MB_SIZE / 2; x++) {
704  d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
705  ret += d * d;
706  }
707  }
708  }
709 
710  return ret;
711 }
712 
713 // return the possibly adjusted size of the codebook
714 #define CERTAIN(x) ((x) != ENC_UNCERTAIN)
715 static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
716  int linesize[4], int v1mode, strip_info *info,
717  mb_encoding encoding)
718 {
719  int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
720  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
721  int *codebook = v1mode ? info->v1_codebook : info->v4_codebook;
722  int size = v1mode ? info->v1_size : info->v4_size;
723  int64_t total_error = 0;
724  uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
725  uint8_t *sub_data[4], *vq_data[4];
726  int sub_linesize[4], vq_linesize[4];
727 
728  for (mbn = i = y = 0; y < h; y += MB_SIZE) {
729  for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
730  int *base;
731 
732  if (CERTAIN(encoding)) {
733  // use for the training only the blocks known to be to be encoded [sic:-]
734  if (s->mb[mbn].best_encoding != encoding)
735  continue;
736  }
737 
738  base = s->codebook_input + i * entry_size;
739  if (v1mode) {
740  // subsample
741  for (j = y2 = 0; y2 < entry_size; y2 += 2)
742  for (x2 = 0; x2 < 4; x2 += 2, j++) {
743  plane = y2 < 4 ? 0 : 1 + (x2 >> 1);
744  shift = y2 < 4 ? 0 : 1;
745  x3 = shift ? 0 : x2;
746  y3 = shift ? 0 : y2;
747  base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] +
748  data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] +
749  data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] +
750  data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
751  }
752  } else {
753  // copy
754  for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
755  for (x2 = 0; x2 < MB_SIZE; x2 += 2)
756  for (k = 0; k < entry_size; k++, j++) {
757  plane = k >= 4 ? k - 3 : 0;
758 
759  if (k >= 4) {
760  x3 = (x + x2) >> 1;
761  y3 = (y + y2) >> 1;
762  } else {
763  x3 = x + x2 + (k & 1);
764  y3 = y + y2 + (k >> 1);
765  }
766 
767  base[j] = data[plane][x3 + y3 * linesize[plane]];
768  }
769  }
770  }
771  i += v1mode ? 1 : 4;
772  }
773  }
774 
775  if (i == 0) // empty training set, nothing to do
776  return 0;
777  if (i < size)
778  size = i;
779 
780  avpriv_init_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
781  avpriv_do_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
782 
783  // set up vq_data, which contains a single MB
784  vq_data[0] = vq_pict_buf;
785  vq_linesize[0] = MB_SIZE;
786  vq_data[1] = &vq_pict_buf[MB_AREA];
787  vq_data[2] = vq_data[1] + (MB_AREA >> 2);
788  vq_linesize[1] =
789  vq_linesize[2] = MB_SIZE >> 1;
790 
791  // copy indices
792  for (i = j = y = 0; y < h; y += MB_SIZE)
793  for (x = 0; x < s->w; x += MB_SIZE, j++) {
794  mb_info *mb = &s->mb[j];
795  // skip uninteresting blocks if we know their preferred encoding
796  if (CERTAIN(encoding) && mb->best_encoding != encoding)
797  continue;
798 
799  // point sub_data to current MB
800  get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
801 
802  if (v1mode) {
803  mb->v1_vector = s->codebook_closest[i];
804 
805  // fill in vq_data with V1 data
806  decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
807 
808  mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
809  vq_data, vq_linesize);
810  total_error += mb->v1_error;
811  } else {
812  for (k = 0; k < 4; k++)
813  mb->v4_vector[k] = s->codebook_closest[i + k];
814 
815  // fill in vq_data with V4 data
816  decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
817 
818  mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
819  vq_data, vq_linesize);
820  total_error += mb->v4_error;
821  }
822  i += v1mode ? 1 : 4;
823  }
824  // check that we did it right in the beginning of the function
825  av_assert0(i >= size); // training set is no smaller than the codebook
826 
827  return size;
828 }
829 
831  uint8_t *last_data[4], int last_linesize[4],
832  uint8_t *data[4], int linesize[4],
833  strip_info *info)
834 {
835  int x, y, i;
836  uint8_t *sub_last_data [4], *sub_pict_data [4];
837  int sub_last_linesize[4], sub_pict_linesize[4];
838 
839  for (i = y = 0; y < h; y += MB_SIZE)
840  for (x = 0; x < s->w; x += MB_SIZE, i++) {
841  get_sub_picture(s, x, y, last_data, last_linesize,
842  sub_last_data, sub_last_linesize);
843  get_sub_picture(s, x, y, data, linesize,
844  sub_pict_data, sub_pict_linesize);
845 
846  s->mb[i].skip_error =
848  sub_last_data, sub_last_linesize,
849  sub_pict_data, sub_pict_linesize);
850  }
851 }
852 
853 static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
854  unsigned char *buf, int strip_size)
855 {
856  // actually we are exclusively using intra strip coding (how much can we win
857  // otherwise? how to choose which part of a codebook to update?),
858  // keyframes are different only because we disallow ENC_SKIP on them -- rl
859  // (besides, the logic here used to be inverted: )
860  // buf[0] = keyframe ? 0x11: 0x10;
861  buf[0] = keyframe ? 0x10 : 0x11;
862  AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
863  // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
864  AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
865  AV_WB16(&buf[6], 0);
866  // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
867  AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
868  AV_WB16(&buf[10], s->w);
869 }
870 
871 static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
872  uint8_t *last_data[4], int last_linesize[4],
873  uint8_t *data[4], int linesize[4],
874  uint8_t *scratch_data[4], int scratch_linesize[4],
875  unsigned char *buf, int64_t *best_score)
876 {
877  int64_t score = 0;
878  int best_size = 0;
879  strip_info info;
880  // for codebook optimization:
881  int v1enough, v1_size, v4enough, v4_size;
882  int new_v1_size, new_v4_size;
883  int v1shrunk, v4shrunk;
884 
885  if (!keyframe)
886  calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
887  &info);
888 
889  // try some powers of 4 for the size of the codebooks
890  // constraint the v4 codebook to be no bigger than v1 one,
891  // (and no less than v1_size/4)
892  // thus making v1 preferable and possibly losing small details? should be ok
893 #define SMALLEST_CODEBOOK 1
894  for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
895  for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
897  // try all modes
898  for (mode = 0; mode < MODE_COUNT; mode++) {
899  // don't allow MODE_MC in intra frames
900  if (keyframe && mode == MODE_MC)
901  continue;
902 
903  if (mode == MODE_V1_ONLY) {
904  info.v1_size = v1_size;
905  // the size may shrink even before optimizations if the input is short:
906  info.v1_size = quantize(s, h, data, linesize, 1,
907  &info, ENC_UNCERTAIN);
908  if (info.v1_size < v1_size)
909  // too few eligible blocks, no sense in trying bigger sizes
910  v1enough = 1;
911 
912  info.v4_size = 0;
913  } else { // mode != MODE_V1_ONLY
914  // if v4 codebook is empty then only allow V1-only mode
915  if (!v4_size)
916  continue;
917 
918  if (mode == MODE_V1_V4) {
919  info.v4_size = v4_size;
920  info.v4_size = quantize(s, h, data, linesize, 0,
921  &info, ENC_UNCERTAIN);
922  if (info.v4_size < v4_size)
923  // too few eligible blocks, no sense in trying bigger sizes
924  v4enough = 1;
925  }
926  }
927 
928  info.mode = mode;
929  // choose the best encoding per block, based on current experience
930  score = calculate_mode_score(s, h, &info, 0,
931  &v1shrunk, &v4shrunk);
932 
933  if (mode != MODE_V1_ONLY) {
934  int extra_iterations_limit = s->max_extra_cb_iterations;
935  // recompute the codebooks, omitting the extra blocks
936  // we assume we _may_ come here with more blocks to encode than before
937  info.v1_size = v1_size;
938  new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
939  if (new_v1_size < info.v1_size)
940  info.v1_size = new_v1_size;
941  // we assume we _may_ come here with more blocks to encode than before
942  info.v4_size = v4_size;
943  new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
944  if (new_v4_size < info.v4_size)
945  info.v4_size = new_v4_size;
946  // calculate the resulting score
947  // (do not move blocks to codebook encodings now, as some blocks may have
948  // got bigger errors despite a smaller training set - but we do not
949  // ever grow the training sets back)
950  for (;;) {
951  score = calculate_mode_score(s, h, &info, 1,
952  &v1shrunk, &v4shrunk);
953  // do we have a reason to reiterate? if so, have we reached the limit?
954  if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
955  break;
956  // recompute the codebooks, omitting the extra blocks
957  if (v1shrunk) {
958  info.v1_size = v1_size;
959  new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
960  if (new_v1_size < info.v1_size)
961  info.v1_size = new_v1_size;
962  }
963  if (v4shrunk) {
964  info.v4_size = v4_size;
965  new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
966  if (new_v4_size < info.v4_size)
967  info.v4_size = new_v4_size;
968  }
969  }
970  }
971 
972  if (best_size == 0 || score < *best_score) {
973  *best_score = score;
974  best_size = encode_mode(s, h,
975  scratch_data, scratch_linesize,
976  last_data, last_linesize, &info,
978 
979  write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
980  }
981  }
982  }
983  }
984 
985  best_size += STRIP_HEADER_SIZE;
986  memcpy(buf, s->strip_buf, best_size);
987 
988  return best_size;
989 }
990 
991 static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
992  int num_strips, int data_size, int isakeyframe)
993 {
994  buf[0] = isakeyframe ? 0 : 1;
995  AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
996  AV_WB16(&buf[4], s->w);
997  AV_WB16(&buf[6], s->h);
998  AV_WB16(&buf[8], num_strips);
999 
1000  return CVID_HEADER_SIZE;
1001 }
1002 
1004  int isakeyframe, unsigned char *buf, int buf_size)
1005 {
1006  int num_strips, strip, i, y, nexty, size, temp_size, best_size;
1007  uint8_t *last_data [4], *data [4], *scratch_data [4];
1008  int last_linesize[4], linesize[4], scratch_linesize[4];
1009  int64_t best_score = 0, score, score_temp;
1010  int best_nstrips;
1011 
1012  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
1013  int x;
1014  // build a copy of the given frame in the correct colorspace
1015  for (y = 0; y < s->h; y += 2)
1016  for (x = 0; x < s->w; x += 2) {
1017  uint8_t *ir[2];
1018  int32_t r, g, b, rr, gg, bb;
1019  ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
1020  ir[1] = ir[0] + frame->linesize[0];
1021  get_sub_picture(s, x, y,
1023  scratch_data, scratch_linesize);
1024  r = g = b = 0;
1025  for (i = 0; i < 4; ++i) {
1026  int i1, i2;
1027  i1 = (i & 1);
1028  i2 = (i >= 2);
1029  rr = ir[i2][i1 * 3 + 0];
1030  gg = ir[i2][i1 * 3 + 1];
1031  bb = ir[i2][i1 * 3 + 2];
1032  r += rr;
1033  g += gg;
1034  b += bb;
1035  // using fixed point arithmetic for portable repeatability, scaling by 2^23
1036  // "Y"
1037  // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
1038  rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
1039  if (rr < 0)
1040  rr = 0;
1041  else if (rr > 255)
1042  rr = 255;
1043  scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
1044  }
1045  // let us scale down as late as possible
1046  // r /= 4; g /= 4; b /= 4;
1047  // "U"
1048  // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
1049  rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
1050  if (rr < -128)
1051  rr = -128;
1052  else if (rr > 127)
1053  rr = 127;
1054  scratch_data[1][0] = rr + 128; // quantize needs unsigned
1055  // "V"
1056  // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
1057  rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
1058  if (rr < -128)
1059  rr = -128;
1060  else if (rr > 127)
1061  rr = 127;
1062  scratch_data[2][0] = rr + 128; // quantize needs unsigned
1063  }
1064  }
1065 
1066  // would be nice but quite certainly incompatible with vintage players:
1067  // support encoding zero strips (meaning skip the whole frame)
1068  for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
1069  score = 0;
1070  size = 0;
1071 
1072  for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
1073  int strip_height;
1074 
1075  nexty = strip * s->h / num_strips; // <= s->h
1076  // make nexty the next multiple of 4 if not already there
1077  if (nexty & 3)
1078  nexty += 4 - (nexty & 3);
1079 
1080  strip_height = nexty - y;
1081  if (strip_height <= 0) { // can this ever happen?
1082  av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
1083  continue;
1084  }
1085 
1086  if (s->pix_fmt == AV_PIX_FMT_RGB24)
1087  get_sub_picture(s, 0, y,
1089  data, linesize);
1090  else
1091  get_sub_picture(s, 0, y,
1092  (uint8_t **)frame->data, (int *)frame->linesize,
1093  data, linesize);
1094  get_sub_picture(s, 0, y,
1096  last_data, last_linesize);
1097  get_sub_picture(s, 0, y,
1099  scratch_data, scratch_linesize);
1100 
1101  if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
1102  last_data, last_linesize, data, linesize,
1103  scratch_data, scratch_linesize,
1104  s->frame_buf + size + CVID_HEADER_SIZE,
1105  &score_temp)) < 0)
1106  return temp_size;
1107 
1108  score += score_temp;
1109  size += temp_size;
1110  }
1111 
1112  if (best_score == 0 || score < best_score) {
1113  best_score = score;
1114  best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, isakeyframe);
1115 
1117  memcpy(buf, s->frame_buf, best_size);
1118  best_nstrips = num_strips;
1119  }
1120  // avoid trying too many strip numbers without a real reason
1121  // (this makes the processing of the very first frame faster)
1122  if (num_strips - best_nstrips > 4)
1123  break;
1124  }
1125 
1126  // let the number of strips slowly adapt to the changes in the contents,
1127  // compared to full bruteforcing every time this will occasionally lead
1128  // to some r/d performance loss but makes encoding up to several times faster
1129  if (!s->strip_number_delta_range) {
1130  if (best_nstrips == s->max_strips) { // let us try to step up
1131  s->max_strips = best_nstrips + 1;
1132  if (s->max_strips >= s->max_max_strips)
1133  s->max_strips = s->max_max_strips;
1134  } else { // try to step down
1135  s->max_strips = best_nstrips;
1136  }
1137  s->min_strips = s->max_strips - 1;
1138  if (s->min_strips < s->min_min_strips)
1139  s->min_strips = s->min_min_strips;
1140  } else {
1141  s->max_strips = best_nstrips + s->strip_number_delta_range;
1142  if (s->max_strips >= s->max_max_strips)
1143  s->max_strips = s->max_max_strips;
1144  s->min_strips = best_nstrips - s->strip_number_delta_range;
1145  if (s->min_strips < s->min_min_strips)
1146  s->min_strips = s->min_min_strips;
1147  }
1148 
1149  return best_size;
1150 }
1151 
1153  const AVFrame *frame, int *got_packet)
1154 {
1155  CinepakEncContext *s = avctx->priv_data;
1156  int ret;
1157 
1158  s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
1159 
1160  if ((ret = ff_alloc_packet2(avctx, pkt, s->frame_buf_size, 0)) < 0)
1161  return ret;
1162  ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size);
1163  pkt->size = ret;
1164  if (s->curframe == 0)
1165  pkt->flags |= AV_PKT_FLAG_KEY;
1166  *got_packet = 1;
1167 
1168  FFSWAP(AVFrame *, s->last_frame, s->best_frame);
1169 
1170  if (++s->curframe >= s->keyint)
1171  s->curframe = 0;
1172 
1173  return 0;
1174 }
1175 
1177 {
1178  CinepakEncContext *s = avctx->priv_data;
1179  int x;
1180 
1184  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
1186  av_freep(&s->codebook_input);
1188  av_freep(&s->strip_buf);
1189  av_freep(&s->frame_buf);
1190  av_freep(&s->mb);
1191 
1192  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
1193  av_freep(&s->pict_bufs[x]);
1194 
1195  return 0;
1196 }
1197 
1199  .name = "cinepak",
1200  .long_name = NULL_IF_CONFIG_SMALL("Cinepak"),
1201  .type = AVMEDIA_TYPE_VIDEO,
1202  .id = AV_CODEC_ID_CINEPAK,
1203  .priv_data_size = sizeof(CinepakEncContext),
1205  .encode2 = cinepak_encode_frame,
1206  .close = cinepak_encode_end,
1208  .priv_class = &cinepak_class,
1209 };
Context structure for the Lagged Fibonacci PRNG.
Definition: lfg.h:33
#define VECTOR_MAX
Definition: cinepakenc.c:57
#define NULL
Definition: coverity.c:32
static enum AVPixelFormat pix_fmt
static int shift(int a, int b)
Definition: sonic.c:82
int size
This structure describes decoded (raw) audio or video data.
Definition: frame.h:300
AVOption.
Definition: opt.h:246
static void calculate_skip_errors(CinepakEncContext *s, int h, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], strip_info *info)
Definition: cinepakenc.c:830
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
else temp
Definition: vf_mcdeint.c:256
const char * g
Definition: vf_curves.c:115
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:35
static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: cinepakenc.c:1152
static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe, unsigned char *buf, int strip_size)
Definition: cinepakenc.c:853
int size
Definition: packet.h:356
const char * b
Definition: vf_curves.c:116
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
int strip_number_delta_range
Definition: cinepakenc.c:128
#define MIN_STRIPS
Definition: cinepakenc.c:61
int v1_vector
Definition: cinepakenc.c:88
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:736
static AVPacket pkt
int v4_vector[4]
Definition: cinepakenc.c:90
#define CVID_HEADER_SIZE
Definition: cinepakenc.c:50
AVCodec.
Definition: codec.h:190
static void get_sub_picture(CinepakEncContext *s, int x, int y, uint8_t *in_data[4], int in_linesize[4], uint8_t *out_data[4], int out_linesize[4])
Definition: cinepakenc.c:447
int v1_codebook[CODEBOOK_MAX *VECTOR_MAX]
Definition: cinepakenc.c:97
#define report
Definition: checkasm.h:126
uint8_t base
Definition: vp3data.h:202
#define VE
Definition: cinepakenc.c:132
#define MAX_STRIPS
Definition: cinepakenc.c:60
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:32
uint8_t
#define av_cold
Definition: attributes.h:88
static int compute_mb_distortion(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
Definition: cinepakenc.c:688
#define av_malloc(s)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
int * codebook_closest
Definition: cinepakenc.c:119
#define mb
AVFrame * input_frame
Definition: cinepakenc.c:111
AVOptions.
#define CHUNK_HEADER_SIZE
Definition: cinepakenc.c:52
static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], uint8_t *scratch_data[4], int scratch_linesize[4], unsigned char *buf, int64_t *best_score)
Definition: cinepakenc.c:871
int avpriv_do_elbg(int *points, int dim, int numpoints, int *codebook, int numCB, int max_steps, int *closest_cb, AVLFG *rand_state)
Implementation of the Enhanced LBG Algorithm Based on the paper "Neural Networks 14:1219-1237" that c...
Definition: elbg.c:371
static AVFrame * frame
const char data[16]
Definition: mxf.c:91
#define SMALLEST_CODEBOOK
uint8_t * data
Definition: packet.h:355
int v4_codebook[CODEBOOK_MAX *VECTOR_MAX]
Definition: cinepakenc.c:98
#define CERTAIN(x)
Definition: cinepakenc.c:714
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
#define av_log(a,...)
static const AVOption options[]
Definition: cinepakenc.c:133
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:388
#define OFFSET(x)
Definition: cinepakenc.c:131
#define U(x)
Definition: vp56_arith.h:37
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:269
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:176
#define MB_AREA
Definition: cinepakenc.c:55
#define MB_SIZE
Definition: cinepakenc.c:54
unsigned char * frame_buf
Definition: cinepakenc.c:107
#define AVERROR(e)
Definition: error.h:43
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
Definition: cinepakenc.c:523
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification. ...
Definition: internal.h:188
int skip_error
Definition: cinepakenc.c:92
const char * r
Definition: vf_curves.c:114
mb_encoding
Definition: cinepakenc.c:79
simple assert() macros that are a bit more flexible than ISO C assert().
const char * name
Name of the codec implementation.
Definition: codec.h:197
uint8_t bits
Definition: vp3data.h:202
static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int v1_vector, strip_info *info)
Definition: cinepakenc.c:464
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:361
common internal API header
#define FFMIN(a, b)
Definition: common.h:96
int v1_error
Definition: cinepakenc.c:89
static av_cold int cinepak_encode_init(AVCodecContext *avctx)
Definition: cinepakenc.c:154
int width
picture width / height.
Definition: avcodec.h:699
static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
Definition: cinepakenc.c:392
static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int *v4_vector, strip_info *info)
Definition: cinepakenc.c:503
int32_t
int v1_size
Definition: cinepakenc.c:99
#define AV_WB24(p, d)
Definition: intreadwrite.h:450
#define s(width, name)
Definition: cbs_vp9.c:257
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:423
int v4_error
Definition: cinepakenc.c:91
#define AV_LOG_INFO
Standard information.
Definition: log.h:187
mb_encoding best_encoding
Definition: cinepakenc.c:93
#define FF_LAMBDA_SCALE
Definition: avutil.h:226
AVFrame * best_frame
Definition: cinepakenc.c:109
int avpriv_init_elbg(int *points, int dim, int numpoints, int *codebook, int numCB, int max_steps, int *closest_cb, AVLFG *rand_state)
Initialize the **codebook vector for the elbg algorithm.
Definition: elbg.c:337
Libavcodec external API header.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:331
main external API structure.
Definition: avcodec.h:526
AVCodec ff_cinepak_encoder
Definition: cinepakenc.c:1198
Describe the class of an AVClass context structure.
Definition: log.h:67
#define AV_WB32(p, v)
Definition: intreadwrite.h:419
AVFrame * scratch_frame
Definition: cinepakenc.c:110
#define STRIP_HEADER_SIZE
Definition: cinepakenc.c:51
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:32
static int encode_codebook(CinepakEncContext *s, int *codebook, int size, int chunk_type_yuv, int chunk_type_gray, unsigned char *buf)
Definition: cinepakenc.c:399
static int encode_mode(CinepakEncContext *s, int h, uint8_t *scratch_data[4], int scratch_linesize[4], uint8_t *last_data[4], int last_linesize[4], strip_info *info, unsigned char *buf)
Definition: cinepakenc.c:542
static const AVClass cinepak_class
Definition: cinepakenc.c:147
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:275
#define flags(name, subs,...)
Definition: cbs_av1.c:565
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:314
int max_extra_cb_iterations
Definition: cinepakenc.c:124
Y , 8bpp.
Definition: pixfmt.h:74
common internal api header.
common internal and external API header
if(ret< 0)
Definition: vf_mcdeint.c:279
void * priv_data
Definition: avcodec.h:553
static int quantize(CinepakEncContext *s, int h, uint8_t *data[4], int linesize[4], int v1mode, strip_info *info, mb_encoding encoding)
Definition: cinepakenc.c:715
unsigned char * strip_buf
Definition: cinepakenc.c:107
unsigned char * pict_bufs[4]
Definition: cinepakenc.c:107
static int rd_frame(CinepakEncContext *s, const AVFrame *frame, int isakeyframe, unsigned char *buf, int buf_size)
Definition: cinepakenc.c:1003
AVFrame * last_frame
Definition: cinepakenc.c:108
#define av_freep(p)
CinepakMode
Definition: cinepakenc.c:71
#define CODEBOOK_MAX
Definition: cinepakenc.c:58
static int64_t calculate_mode_score(CinepakEncContext *s, int h, strip_info *info, int report, int *training_set_v1_shrunk, int *training_set_v4_shrunk)
Definition: cinepakenc.c:274
#define av_malloc_array(a, b)
#define FFSWAP(type, a, b)
Definition: common.h:99
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
This structure stores compressed data.
Definition: packet.h:332
enum AVPixelFormat pix_fmt
Definition: cinepakenc.c:112
mode
Use these values in ebur128_init (or&#39;ed).
Definition: ebur128.h:83
static av_cold int cinepak_encode_end(AVCodecContext *avctx)
Definition: cinepakenc.c:1176
for(j=16;j >0;--j)
CinepakMode mode
Definition: cinepakenc.c:101
static int write_cvid_header(CinepakEncContext *s, unsigned char *buf, int num_strips, int data_size, int isakeyframe)
Definition: cinepakenc.c:991
AVCodecContext * avctx
Definition: cinepakenc.c:106
int keyint_min
minimum GOP size
Definition: avcodec.h:1107