
Chapter 1

Writing New Models

With Zelig, writing a new model in R is straightforward. (If you already have a model, see
Chapter ?? for how to include it in Zelig.) With tools to streamline user inputs, writing a
new model does not require a lot of programming knowledge, but lets developers focus on
the model’s math. Generally, writing a new statistical procedure or model comes in orderly
steps:

1. Write down the mathematical model. Define the parameters that you need, grouping
parameters into convenient vectors or matrices whenever possible (this will make your
code clearer).

2. Write the code.

3. Test the code (usually using Monte Carlo data, where you know the true values being
estimated) and make sure that it works as expected.

4. Write some documentation explaining your model and the functions that run your
model.

Somewhere between steps [1] and [2], you will need to translate input data into the math-
ematical notation that you used to write down the model. Rather than repeating whole
blocks of code, use functions to streamline the number of commands that users will need to
run your model.

With more steps being performed by fewer commands, the inputs to these commands
become more sophisticated. The structure of those inputs actually matters quite a lot. If
your function has a convoluted syntax, it will be difficult to use, difficult to explain, and
difficult to document. If your function is easy to use and has an intuitive syntax, however,
it will be easy to explain and document, which will make your procedure more accessible to
all users.

1

1.1 Managing Statistical Model Inputs

Most statistical models require a matrix of explanatory variables and a matrix of dependent
variables. Rather than have users create matrices themselves, R has a convenient user
interface to create matrices of response and explanatory variables on the fly. Users simply
specify a formula in the form of dependent ~ explanatory variables, and developers use
the following functions to transform the formula into the appropriate matrices. Let mydata
be a data frame.

> formula <- y ~ x1 + x2 # User input

Given the formula above, programmers can use the following standard commands

> D <- model.frame(formula, data = mydata) # Subset & listwise deletion

> X <- model.matrix(formula, data = D) # Creates X matrix

> Y <- model.response(D) # Creates Y matrix

where

� D is a subset of mydata that contains only the variables specified in the formula (y, x1,
and x2) with listwise deletion performed on the subset data frame;

� X is a matrix that contains a column of 1’s, and the explanatory variables x1 and x2

from D; and

� Y is a matrix containing the dependent variable(s) from D.

Depending on the model, Y may be a column vector, matrix, or other data structure.

1.1.1 Describe the Statistical Model

After setting up the X matrix, the next step for most models will be to identify the cor-
responding vector of parameters. For a single response variable model with no ancillary
parameters, the standard R interface is quite convenient: given X, the model’s parameters
are simply β.

There are very few models, however, that fall into this category. Even Normal regression,
for example, has two sets of parameters β and σ2. In order to make the R formula format
more flexible, Zelig has an additional set of tools that lets you describe the inputs to your
model (for multiple sets of parameters).

After you have written down the statistical model, identify the parameters in your model.
With these parameters in mind, the first step is to write a describe.*() function for your
model. If your model is called mymodel, then the describe.mymodel() function takes no
arguments and returns a list with the following information:

� category: a character string that describes the dependent variable. See Section ?? for
the current list of available categories.

2

� parameters: a list containing parameter sets used in your model. For each parameter
(e.g., theta), you need to provide the following information:

– equations: an integer number of equations for the parameter. For parameters
that can take, for example, two to four equations, use c(2, 4).

– tagsAllowed: a logical value (TRUE/FALSE) specifying whether a given parameter
allows constraints.

– depVar: a logical value (TRUE/FALSE) specifying whether a parameter requires a
corresponding dependent variable.

– expVar: a logical value (TRUE/FALSE) specifying whether a parameter allows ex-
planatory variables.

(See Section ?? for examples and additional arguments output by describe.mymodel().)

1.1.2 Single Response Variable Models: Normal Regression Model

Let’s say that you are trying to write a Normal regression model with stochastic component

Normal(yi | µi, σ
2) =

1√
2πσ

exp

(
−

(
(yi − µi)

2

2σ2

))
with scalar variance parameter σ2 > 0, and systematic component E(Yi) = µi = xiβ. This
implies two sets of parameters in your model, and the following describe.normal.regression()
function:

describe.normal.regression <- function() {

category <- "continuous"

mu <- list(equations = 1, # Systematic component

tagsAllowed = FALSE,

depVar = TRUE,

expVar = TRUE)

sigma2 <- list(equations = 1, # Scalar ancillary parameter

tagsAllowed = FALSE,

depVar = FALSE,

expVar = FALSE)

pars <- list(mu = mu, sigma2 = sigma2)

list(category = category, parameters = pars)

}

3

To find the log-likelihood:

L (β, σ2 | y) =
n∏

1=1

Normal(yi | µi, σ
2)

=
n∏

i=1

(2πσ2)−1/2 exp

(
−(yi − µi)

2

2σ2

)
= (2πσ2)−n/2

n∏
i=1

exp

(
−(yi − µi)

2

2σ2

)
= (2πσ2)−n/2

n∏
i=1

exp

(
−(yi − xiβ)2

2σ2

)
ln L (β, σ2 | y) = −n

2
ln(2πσ2)−

n∑
i=1

(yi − xiβ)2

2σ2

= −n

2
ln(2πσ2)− 1

2σ2

n∑
i=1

(yi − xiβ)2

∝ −1

2

(
n ln σ2 +

∑n
i=1(yi − xiβ)2

σ2

)
In R code, this translates to:

ll.normal <- function(par, X, Y, n, terms) {

beta <- parse.par(par, terms, eqn = "mu") # [1]

gamma <- parse.par(par, terms, eqn = "sigma2") # [2]

sigma2 <- exp(gamma)

-0.5 * (n * log(sigma2) + sum((Y - X %*% beta)^2 / sigma2))

}

At Comment [1] above, we use the function parse.par() to pull out the vector of parameters
beta (which relate the systematic component µi to the explanatory variables xi). No matter
how many covariates there are, the parse.par() function can use terms to pull out the
appropriate parameters from par. We also use parse.par() at Comment [2] to pull out the
scalar ancillary parameter that (after transformation) corresponds to the σ2 parameter.

To optimize this function, simply type:

out <- optim(start.val, ll.normal, control = list(fnscale = -1),

method = "BFGS", hessian = TRUE, X = X, Y = Y, terms = terms)

where

� start.val is a vector of starting values for par. Use set.start() to create starting
values for all parameters, systematic and ancillary, in one step.

� ll.normal is the log-likelihood function derived above.

4

� "BFGS" specifies unconstrained optimization using a quasi-Newton method.

� control = list(fnscale = -1) specifies that R should maximize the function (omit-
ting this causes R to minimize the function by default).

� hessian = TRUE instructs R to return the Hessian matrix (from which you may cal-
culate the variance-covariance matrix).

� X and Y are the matrix of explanatory variables and vector of dependent variables, used
in the ll.normal() function.

� terms are meta-data constructed from the model.frame() command.

Please refer to the R-help for optim() for more options.
To make this procedure generalizable, we can write a function that takes a user-specified

data frame and formula, and optional starting values for the optimization procedure:

normal.regression <- function(formula, data, start.val = NULL, ...) {

fml <- parse.formula(formula, model = "normal.regression") # [1]

D <- model.frame(fml, data = data)

X <- model.matrix(fml, data = D)

Y <- model.response(D)

terms <- attr(D, "terms")

n <- nrow(X)

start.val <- set.start(start.val, terms)

res <- optim(start.val, ll.normal, method = "BFGS",

hessian = TRUE, control = list(fnscale = -1),

X = X, Y = Y, n = n, terms = terms, ...) # [2]

fit <- model.end(res, D) # [3]

fit$n <- n

class(fit) <- "normal" # [4]

fit

}

The following comments correspond to the bracketed numbers above:

1. The parse.formula() command looks for the describe.normal.regression() func-
tion, which changes the user-specified formula into the following format:

list(mu = formula, # where `formula' was specified by the user

sigma = ~ 1)

5

2. The ... here indicate that if the user enters any additional arguments when calling
normal.regression(), that those arguments should go to the optim() function.

3. The model.end() function takes the optimized output and the listwise deleted data
frame D and creates an object that will work with setx().

4. Choose a class for your model output so that you will be able to write an appropriate
summary(), param(), and qi() function for your model.

1.1.3 Multivariate models: Bivariate Normal example

Most common models have one systematic component. For n observations, the systematic
component varies over observations i = 1, . . . , n. In the case of the Normal regression model,
the systematic component is µi (σ2 is not estimated as a function of covariates).

In some cases, however, your model may have more than one systematic component.
In the case of bivariate probit, we have a dependent variable Yi = (Yi1, Yi2) observed as
(0,0), (1,0), (0,1), or (1,1) for i = 1, . . . , n. Similar to a single-response probit model, the
stochastic component is described by two latent (unobserved) continuous variables (Y ∗

i1, Y ∗
i2)

which follow the bivariate Normal distribution:(
Y ∗

i1

Y ∗
i2

)
∼ Normal

{(
µi1

µi2

)
,

(
1 ρ
ρ 1

)}
,

where for j = 1, 2, µij is the mean for Y ∗
ij and ρ is a correlation parameter. The follow-

ing observation mechanism links the observed dependent variables, Yij, with these latent
variables

Yij =

{
1 if Y ∗

ij ≥ 0,
0 otherwise.

The systemic components for each observation are

µij = xijβj for j = 1, 2,

ρ =
exp(xi3β3)− 1

exp(xi3β3) + 1
.

In the default specification, ρ is a scalar (such that xi3 only contains an intercept term).
If so, we have two sets of parameters: µi = (µi1, µi2) and ρ. This implies the following

describe.bivariate.probit() function:

describe.bivariate.probit <- function() {

category <- "dichotomous"

package <- list(name = "mvtnorm", # Required package and

version = "0.7") # minimum version number

mu <- list(equations = 2, # Systematic component has 2

tagsAllowed = TRUE, # required equations

6

depVar = TRUE,

expVar = TRUE),

rho <- list(equations = 1, # Optional systematic component

tagsAllowed = FALSE, # (estimated as an ancillary

depVar = FALSE, # parameter by default)

expVar = TRUE),

pars <- parameters(mu = mu, rho = rho)

list(category = category, package = package, parameters = pars)

}

Since users may choose different explanatory variables to parameterize µi1 and µi2 (and
sometimes ρ), the model requires a minimum of two formulas. For example,

formulae <- list(mu1 = y1 ~ x1 + x2, # User input

mu2 = y2 ~ x2 + x3)

fml <- parse.formula(formulae, model = "bivariate.probit") # [1]

D <- model.frame(fml, data = mydata)

X <- model.matrix(fml, data = D)

Y <- model.response(D)

At comment [1], parse.formula() finds the describe.bivariate.probit() function and
parses the formulas accordingly.

If ρ takes covariates (and becomes a systematic component rather than an ancillary
parameter), there can be three sets of explanatory variables:

formulae <- list(mu1 = y1 ~ x1 + x2,

mu2 = y2 ~ x2 + x3,

rho = ~ x4 + x5)

From the perspective of the programmer, a nearly identical framework works for both
single and multiple equation models. The (parse.formula()) line changes the class of fml
from "list" to "multiple" and hence ensures that model.frame() and model.matrix() go
to the appropriate methods. D, X , and Y are analogous to their single equation counterparts
above:

� D is the subset of mydata containing the variables y1, y2, x1, x2, and x3 with listwise
deletion performed on the subset;

� X is a matrix corresponding to the explanatory variables, in one of three forms discussed
below (see Section ??).

� Y is an n × J matrix (where J = 2 here) with columns (y1, y2) corresponding to the
outcome variables on the left-hand sides of the formulas.

7

Given for the bivariate probit probability density described above, the likelihood is:

L(π|Yi) =
n∏

i=1

π
I{Yi=(0,0)}
00 π

I{Yi=(1,0)}
10 π

I{Yi=(0,1)}
01 π

I{Yi=(1,1)}
11

where I is an indicator function and

� π00 =
∫ 0

−∞

∫ 0

−∞ Normal(Y ∗
i1, Y

∗
i2 | µi1, µi2, ρ)dY ∗

i2dY ∗
i1

� π10 =
∫∞

0

∫ 0

−∞ Normal(Y ∗
i1, Y

∗
i2 | µi1, µi2, ρ)dY ∗

i2dY ∗
i1

� π01 =
∫ 0

−∞

∫∞
0

Normal(Y ∗
i1, Y

∗
i2 | µi1, µi2, ρ)dY ∗

i2dY ∗
i1

� π11 = 1− π00 − π10 − π01

This implies the following log-likelihood:

log L(π|Yi) =
n∑

i=1

I{Yi = (0, 0)} log π00 + I{Yi = (1, 0)} log π10

+I{Yi = (0, 1)} log π01 + I{Yi = (1, 1)} log π11

(For the corresponding R code, see Section ?? below.)

1.2 Easy Ways to Manage Matrices

Most statistical methods relate explanatory variables xi to a dependent variable of interest
yi for each observation i = 1, . . . , n. Let β be a set of parameters that correspond to each
column in X, which is an n× k matrix with rows xi. For a single equation model, the linear
predictor is

ηi = xiβ = β0 + β1xi1 + β2xi2 + · · ·+ βkxik

Thus, η is the set of ηi for i = 1, . . . , n and is usually represented as an n× 1 matrix.
For a two equation model such as bivariate probit, the linear predictor becomes a matrix

with columns corresponding to each dependent variable (y1i, y2i):

ηi = (ηi1, ηi2) = (xi1β1, xi2β2)

With η as an n×2 matrix, we now have a few choices as to how to create the linear predictor:

1. An intuitive layout, which stacks matrices of explanatory variables, provides an easy
visual representation of the relationship between explanatory variables and coefficients;

2. A computationally-efficient layout, which takes advantage of computational vec-
torization; and

3. A memory-saving layout, which reduces the overall size of the X and β matrices.

8

Using the simple tools described in this section, you can pick the best matrix management
method for your model.

In addition, the way in which η is created also affects the way parameters are estimated.
Let’s say that you want two parameters to have the same effect in different equations. By
setting up X and β in a certain way, you can let users set constraints across parameters.
Continuing the bivariate probit example above, let the model specification be:

formulae <- list(mu1 = y1 ~ x1 + x2 + tag(x3, "land"),

mu2 = y2 ~ x3 + tag(x4, "land"))

where tag() is a special function that constrains variables to have the same effect across
equations. Thus, the coefficient for x3 in equation mu1 is constrained to be equal to the
coefficient for x4 in equation mu2, and this effect is identified as the “land” effect in both
equations. In order to consider constraints across equations, the structure of both X and β
matter.

1.2.1 The Intuitive Layout

A stacked matrix of X and vector β is probably the most visually intuitive configuration.
Let J = 2 be the number of equations in the bivariate probit model, and let vt be the
total number of unique covariates in both equations. Choosing model.matrix(..., shape

= "stacked") yields a (Jn × vt) = (2n × 6) matrix of explanatory variables. Again, let x1

be an n× 1 vector representing variable x1, x2 x2, and so forth. Then

X =

(
1 0 x1 x2 0 x3

0 1 0 0 x3 x4

)
Correspondingly, β is a vector with elements

(βµ1

0 βµ2

0 βµ1
x1

βµ1
x2

βµ2
x3

βland)′

where βj
0 are the intercept terms for equation j = {µ1, µ2}. Since X is (2n × 6) and β is

(6 × 1), the resulting linear predictor η is also stacked into a (2n × 1) matrix. Although
difficult to manipulate (since observations are indexed by i and 2i for each i = 1, . . . , n rather
than just i), it is easy to see that we have turned the two equations into one big X matrix
and one long vector β, which is directly analogous to the familiar single-equation η.

1.2.2 The Computationally-Efficient Layout

Choosing array X and vector β is probably the the most computationally-efficient config-
uration: model.matrix(..., shape = "array") produces an n × kt × J array where J is
the total number of equations and kt is the total number of parameters across all the equa-
tions. Since some parameter values may be constrained across equations, kt ≤

∑J
j=1 kj. If a

9

variable is not in a certain equation, it is observed as a vector of 0s. With this option, each
i = 1, . . . , n xi matrix becomes:(

1 0 xi1 xi2 0 xi3

0 1 0 0 xi3 xi4

)
By stacking each of these xi matrices along the first dimension, we get X as an array with
dimensions n× kt × J .

Correspondingly, β is a vector with elements

(βµ1

0 βµ2

0 βµ1
x1

βµ1
x2

βµ2
x3

βland)′

To multiply the X array with dimensions (n× 6× 2) and the (6× 1) β vector, we vectorize
over equations as follows:

eta <- apply(X, 3, '%*%', beta)

The linear predictor eta is therefore a (n× 2) matrix.

1.2.3 The Memory-Efficient Layout

Choosing a “compact” X matrix and matrix β is probably the most memory-efficient config-
uration: model.matrix(..., shape = "compact") (the default) produces an n×v matrix,
where v is the number of unique variables (5 in this case)1 in all of the equations. Let x1 be
an n× 1 vector representing variable x1, x2 x2, and so forth.

X = (1 x1 x2 x3 x4) β =


βµ1

0 βµ2

0

βµ1
x1

0
βµ1

x2
0

βland βµ2
x3

0 βland


The βland parameter is used twice to implement the constraint, and the number of empty
cells is minimized by implementing the constraints in β rather than X. Furthermore, since
X is (n× 5) and β is (5× 2), Xβ = η is n× 2.

1.2.4 Interchanging the Three Methods

Continuing the bivariate probit example above, we only need to modify a few lines of code
to put these different schemes into effect. Using the default (memory-efficient) options, the
log-likelihood is:

1Why 5? In addition to the intercept term (a variable which is the same in either equation, and so counts
only as one variable), the unique variables are x1, x2, x3, and x4.

10

bivariate.probit <- function(formula, data, start.val = NULL, ...) {

fml <- parse.formula(formula, model = "bivariate.probit")

D <- model.frame(fml, data = data)

X <- model.matrix(fml, data = D, eqn = c("mu1", "mu2")) # [1]

Xrho <- model.matrix(fml, data = D, eqn = "rho")

Y <- model.response(D)

terms <- attr(D, "terms")

start.val <- set.start(start.val, terms)

start.val <- put.start(start.val, 1, terms, eqn = "rho")

log.lik <- function(par, X, Y, terms) {

Beta <- parse.par(par, terms, eqn = c("mu1", "mu2")) # [2]

gamma <- parse.par(par, terms, eqn = "rho")

rho <- (exp(Xrho %*% gamma) - 1) / (1 + exp(Xrho %*% gamma))

mu <- X %*% Beta # [3]

llik <- 0

for (i in 1:nrow(mu)){

Sigma <- matrix(c(1, rho[i,], rho[i,], 1), 2, 2)

if (Y[i,1]==1)

if (Y[i,2]==1)

llik <- llik + log(pmvnorm(lower = c(0, 0), upper = c(Inf, Inf),

mean = mu[i,], corr = Sigma))

else

llik <- llik + log(pmvnorm(lower = c(0, -Inf), upper = c(Inf, 0),

mean = mu[i,], corr = Sigma))

else

if (Y[i,2]==1)

llik <- llik + log(pmvnorm(lower = c(-Inf, 0), upper = c(0, Inf),

mean = mu[i,], corr = Sigma))

else

llik <- llik + log(pmvnorm(lower = c(-Inf, -Inf), upper = c(0, 0),

mean = mu[i,], corr = Sigma))

}

return(llik)

}

res <- optim(start.val, log.lik, method = "BFGS",

hessian = TRUE, control = list(fnscale = -1),

X = X, Y = Y, terms = terms, ...)

fit <- model.end(res, D)

class(fit) <- "bivariate.probit"

fit

}

11

If you find that the default (memory-efficient) method isn’t the best way to run your
model, you can use either the intuitive option or the computationally-efficient option by
changing just a few lines of code as follows:

� Intuitive option At Comment [1]:

X <- model.matrix(fml, data = D, shape = "stacked", eqn = c("mu1", "mu2"))

and at Comment [2],

Beta <- parse.par(par, terms, shape = "vector", eqn = c("mu1", "mu2"))

The line at Comment [3] remains the same as in the original version.

� Computationally-efficient option Replace the line at Comment [1] with

X <- model.matrix(fml, data = D, shape = "array", eqn = c("mu1", "mu2"))

At Comment [2]:

Beta <- parse.par(par, terms, shape = "vector", eqn = c("mu1", "mu2"))

At Comment [3]:

mu <- apply(X, 3, '%*%', Beta)

Even if your optimizer calls a C or FORTRAN routine, you can use combinations of
model.matrix() and parse.par() to set up the data structures that you need to obtain
the linear predictor (or your model’s equivalent) before passing these data structures to your
optimization routine.

12

