
0.1 poisson.gee: Generalized Estimating Equation for

Poisson Regression

The GEE poisson estimates the same model as the standard poisson regression (appropriate
when your dependent variable represents the number of independent events that occur during
a fixed period of time). Unlike in poisson regression, GEE poisson allows for dependence
within clusters, such as in longitudinal data, although its use is not limited to just panel data.
The user must first specify a “working” correlation matrix for the clusters, which models the
dependence of each observation with other observations in the same cluster. The “working”
correlation matrix is a T ×T matrix of correlations, where T is the size of the largest cluster
and the elements of the matrix are correlations between within-cluster observations. The
appeal of GEE models is that it gives consistent estimates of the parameters and consistent
estimates of the standard errors can be obtained using a robust “sandwich” estimator even if
the “working” correlation matrix is incorrectly specified. If the “working” correlation matrix
is correctly specified, GEE models will give more efficient estimates of the parameters. GEE
models measure population-averaged effects as opposed to cluster-specific effects (See Zorn
(2001)).

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted by id and
should be ordered within each cluster when appropriate.

Additional Inputs

� robust: defaults to TRUE. If TRUE, consistent standard errors are estimated using a
“sandwich” estimator.

Use the following arguments to specify the structure of the “working” correlations within
clusters:

� corstr: defaults to "independence". It can take on the following arguments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′ with t 6= t′.
It assumes that there is no correlation within the clusters and the model becomes
equivalent to standard poisson regression. The“working” correlation matrix is the
identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the “working” cor-
relation matrix with the R argument rather than estimating it from the model.
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– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. Choose this option when the correlations are
assumed to be the same for observations of the same |t − t′| periods apart for
|t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m, where m is the
number of periods t of dependence. This option relaxes the assumption that the
correlations are the same for all observations of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence (Mv=2)
1 α12 α13 0 0

α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′ with t 6= t′.

Choose this option if the correlations are assumed to be the same for all observa-
tions within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr = "AR-M"),
you must also specify Mv = m, where m is the number of periods t of de-
pendence. For example, the first order autoregressive model (AR-1) implies
cor(yit, yit′) = α|t−t′|,∀t, t′ with t 6= t′. In AR-1, observation 1 and observation 2
have a correlation of α. Observation 2 and observation 3 also have a correlation
of α. Observation 1 and observation 3 have a correlation of α2, which is a func-
tion of how 1 and 2 are correlated (α) multiplied by how 2 and 3 are correlated
(α). Observation 1 and 4 have a correlation that is a function of the correlation
between 1 and 2, 2 and 3, and 3 and 4, and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′ with t 6= t′.

No constraints are placed on the correlations, which are then estimated from the
data.

� Mv: defaults to 1. It specifies the number of periods of correlation and only needs to
be specified when corstr is "stat_M_dep", "non_stat_M_dep", or "AR-M".

� R: defaults to NULL. It specifies a user-defined correlation matrix rather than estimating
it from the data. The argument is used only when corstr is "fixed". The input is a
T × T matrix of correlations, where T is the size of the largest cluster.

Examples

1. Example with Exchangeable Dependence

Attaching the sample turnout dataset:

> data(sanction)

Variable identifying clusters

> sanction$cluster <- c(rep(c(1:15), 5), rep(c(16), 3))

Sorting by cluster

> sorted.sanction <- sanction[order(sanction$cluster), ]

Estimating model and presenting summary:
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> z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster",

+ data = sorted.sanction, robust = TRUE, corstr = "exchangeable")

> summary(z.out)

Set explanatory variables to their default values:

> x.out <- setx(z.out)

Simulate quantities of interest

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Generate a plot of quantities of interest:

> plot(s.out)
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The Model

Suppose we have a panel dataset, with Yit denoting the dependent variable of the number
of independent events for a fixed period of time for unit i at time t. Yi is a vector or cluster
of correlated data where yit is correlated with yit′ for some or all t, t′. Note that the model
assumes correlations within i but independence across i.

� The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | λi)

Yit ∼ g(yit | λit)

where f and g are unspecified distributions with means λi and λit. GEE models make
no distributional assumptions and only require three specifications: a mean function,
a variance function, and a correlation structure.

� The systematic component is the mean function, given by:

λit = exp(xitβ)

where xit is the vector of k explanatory variables for unit i at time t and β is the vector
of coefficients.

� The variance function is given by:

Vit = λit

� The correlation structure is defined by a T × T “working” correlation matrix, where
T is the size of the largest cluster. Users must specify the structure of the “working”
correlation matrix a priori. The “working” correlation matrix then enters the variance
term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = λit as the tth
diagonal element, Ri(α) is the“working”correlation matrix, and φ is a scale parameter.
The parameters are then estimated via a quasi-likelihood approach.

� In GEE models, if the mean is correctly specified, but the variance and correlation
structure are incorrectly specified, then GEE models provide consistent estimates of
the parameters and thus the mean function as well, while consistent estimates of the
standard errors can be obtained via a robust “sandwich” estimator. Similarly, if the
mean and variance are correctly specified but the correlation structure is incorrectly
specified, the parameters can be estimated consistently and the standard errors can be
estimated consistently with the sandwich estimator. If all three are specified correctly,
then the estimates of the parameters are more efficient.
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� The robust“sandwich”estimator gives consistent estimates of the standard errors when
the correlations are specified incorrectly only if the number of units i is relatively large
and the number of repeated periods t is relatively small. Otherwise, one should use
the “näıve” model-based standard errors, which assume that the specified correlations
are close approximations to the true underlying correlations. See ? for more details.

Quantities of Interest

� All quantities of interest are for marginal means rather than joint means.

� The method of bootstrapping generally should not be used in GEE models. If you
must bootstrap, bootstrapping should be done within clusters, which is not currently
supported in Zelig. For conditional prediction models, data should be matched within
clusters.

� The expected values (qi$ev) for the GEE poisson model is the mean of simulations
from the stochastic component:

E(Y ) = λc = exp(xcβ),

given draws of β from its sampling distribution, where xc is a vector of values, one for
each independent variable, chosen by the user.

� The first difference (qi$fd) for the GEE poisson model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

� In conditional prediction models, the average expected treatment effect (att.ev) for
the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1) and control
(trit = 0) groups. Variation in the simulations are due to uncertainty in simulating
E[Yit(trit = 0)], the counterfactual expected value of Yit for observations in the treat-
ment group, under the assumption that everything stays the same except that the
treatment indicator is switched to trit = 0.

Output Values

The output of each Zelig command contains useful information which you may view. For
example, if you run z.out <- zelig(y ~ x, model = "poisson.gee", id, data), then
you may examine the available information in z.out by using names(z.out), see the coefficients
by using z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.
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� From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic component, λit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

� From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated standard errors,
p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for the values
specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the treated from
conditional prediction models.

How To Cite

To cite the poisson.gee Zelig model:

Patrick Lam. 2007. ”poisson.gee: General Estimating Equation for Poisson Re-
gression” in Kosuke Imai, Gary King, and Olivia Lau, ”Zelig: Everyone’s
Statistical Software,”http://gking.harvard.edu/zelig

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.
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See also

The gee function is part of the gee package by Vincent J. Carey, ported to R by Thomas Lum-
ley and Brian Ripley. Advanced users may wish to refer to help(gee) and help(family).
Sample data are from Martin (1992). Please inquire with Lisa Martin before publishing
results from these data, as this dataset includes errors that have since been corrected.
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