
0.1 rq: Quantile Regression for Continuous Dependent

Variables

Use a linear programming implementation of quantile regression to estimate a linear predictor
of the τth conditional quantile of the population.

Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "rq", data = mydata, tau = 0.5)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

Additional Inputs

In addition to the standard inputs, zelig() takes the following additional options for quantile
regression:

� tau: defaults to 0.5. Specifies the conditional quantile(s) that will be estimated. 0.5
corresponds to estimating the conditional median, 0.25 and 0.75 correspond to the
conditional quartiles, etc. If tau is a vector, the conditional quantile function at each
tau is estimated. If tau is set outside of the interval [0,1], zelig returns the solution
for all possible conditional quantiles given the data, but does not support inference on
this fit (setx and sim will fail).

� se: a string value that defaults to ”nid”. Specifies the method by which the covariance
matrix of coefficients is estimated during the sim stage of analysis. se can take the
following values, which are passed to the summary.rq function from the quantreg

package. These descriptions are copied from the summary.rq documentation.

– "iid" which presumes that the errors are iid and computes an estimate of the
asymptotic covariance matrix as in KB(1978).

– "nid" which presumes local (in tau) linearity (in x) of the the conditional quantile
functions and computes a Huber sandwich estimate using a local estimate of the
sparsity.

– "ker" which uses a kernel estimate of the sandwich as proposed by Powell(1990).

� ...: additional options passed to rq when fitting the model. See documentation for
rq in the quantreg package for more information.

Examples

1. Basic Example with First Differences

Attach sample data, in this case a dataset pertaining to the efficiency of plants that
convert ammonia to nitric acid. The dependent variable, stack.loss, is 10 times the
percentage of ammonia that escaped unconverted:
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> data(stackloss)

Estimate model:

> z.out1 <- zelig(stack.loss ~ Air.Flow + Water.Temp + Acid.Conc.,

+ model = "rq", data = stackloss, tau = 0.5)

Summarize regression coefficients:

> summary(z.out1)

Set explanatory variables to their default (mean/mode) values, with high (80th per-
centile) and low (20th percentile) values for the water temperature variable (the variable
that indiates the temperature of water in the plant’s cooling coils):

> x.high <- setx(z.out1, Water.Temp = quantile(stackloss$Water.Temp,

+ 0.8))

> x.low <- setx(z.out1, Water.Temp = quantile(stackloss$Water.Temp,

+ 0.2))

Generate first differences for the effect of high versus low water temperature on stack
loss:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

> plot(s.out1)

2



12 14 16 18 20 22 24 26

0.
00

0.
15

Expected Quantile Values: Q(tau= 0.5 |X)

D
en

si
ty

10 15 20 25

0.
00

0.
15

Predicted Quantile Values: Q(tau= 0.5 |X)

D
en

si
ty

−10 −5 0 5

0.
00

0.
15

First Differences in Expected Quantile Values: Q(tau= 0.5 |X1)−Q(tau= 0.5 |X)

D
en

si
ty

2. Using Dummy Variables

We can estimate a model of unemployment as a function of macroeconomic indicators
and fixed effects for each country (see Section ?? for help with dummy variables). Note
that you do not need to create dummy variables, as the program will automatically
parse the unique values in the selected variable into discrete levels.

> data(macro)

> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(country),

+ model = "rq", tau = 0.5, data = macro)

Set values for the explanatory variables, using the default mean/mode values, with
country set to the United States and Japan, respectively:

> x.US <- setx(z.out2, country = "United States")

> x.Japan <- setx(z.out2, country = "Japan")

Simulate quantities of interest:

> s.out2 <- sim(z.out2, x = x.US, x1 = x.Japan)

> plot(s.out2)
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3. Estimating Multiple Quantiles

Using the Engel dataset on food expenditure as a function of income, we can use the
"rq" model to estimate multiple conditional quantiles:

> data(engel)

> z.out3 <- zelig(foodexp ~ income, model = "rq", tau = seq(0.1,

+ 0.9, by = 0.1), data = engel)

We can summarize the coefficient fits, or plot them to compare them to the least
squares conditional mean estimator.

> summary(z.out3)

> plot(summary(z.out3))
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Set the value of income to the top quartile and the bottom quartile of the income
distribution for each fit:

> x.bottom <- setx(z.out3, income = quantile(engel$income,

+ 0.25))

> x.top <- setx(z.out3, income = quantile(engel$income, 0.75))

Simulate quantities of interest for each fit simultaneously:

> s.out3 <- sim(z.out3, x = x.bottom, x1 = x.top)

Summary

> summary(s.out3)

Model

The quantile estimator is best introduced by considering the sample median estimator and
comparing it to the sample mean estimator. To find the mean of a sample, we solve for the
quantity µ which minimizes the sum squared residuals:

µ = arg min
µ

∑
i

(yi − µ)2
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Estimating a quantile is similar, but we solve for ξ which minimizes the sum absolute resid-
uals:

ξ = arg min
ξ

∑
i

|yi − ξ|

One can confirm the equivalence of these optimization problems and the standard mean and
median operators by taking the derivative with respect to the argument and setting it to
zero.

The relationship between quantile regression and ordinary least squares regression is
analogous to the relationship between the sample median and the sample mean, except we
are now solving for the conditional median or conditional mean given covariates and a linear
functional form. The optimization problems for the sample mean and median are then
easily generalized to optimization problems for estimating conditional means or medians by
replacing µ or ξ with a linear combination of covariates X ′β:

β̂mean = arg min
β

∑
i

(Yi −X ′
iβ)2

β̂median = arg min
β

∑
i

|Yi −X ′
iβ| (1)

Equation 1 can be generalized to provide any quantile of the conditional distribution, not
just the median. We do this by weighting the aboslute value function asymmetrically in
proportion to the requested τth quantile:

β̂τ = arg max
β

∑
ρ(Yi −X ′

iβ) (2)

ρ = τ(1− I(Y −X ′
iβ > 0)) + (1− τ)I(Y −X ′

iβ > 0)

We call the asymmetric absolute value function a “check function”. This optimization prob-
lem has no closed form solution and is solved using linear programming, so unlike most Zelig
models, it is not straightforward to specify a systematic and stochastic component for condi-
tional quantile estimates. However, the following systematic and stochastic components do
emerge asymptotically in the large-n limit.

Let Qτ be the true conditional quantile for a given set of covariates Xi, and Q̂τ be the
conditional quantile estimator. Then the stochastic component is described by a density with
mean Q̂τ and variance σ2:

Qτ = N (Q̂τ , σ
2)

The systematic component models the mean and variance of the above density as:

Q̂τ = x′β̂τ

σ2 =
τ(1− τ)

nf 2
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Where β̂ is the vector that solves equation 2, n is the number of datapoints, and f is the
true population density at the τth conditional quantile. Zelig uses this asymptotic approxi-
mation of stochastic and systematic components in simulation and numerically estimates the
population density to derive σ2. The simulation results should thus be treated with caution
when using small datasets as both this asymptotic approximation and the population density
approximation can break down.

Quantities of Interest

� The expected value (qi$ev) is the mean of simulations from the stochastic component,

E(Q̂τ ) = xiβτ ,

given a draw of βτ from its sampling distribution. Variation in the expected value
distribution comes from estimation uncertainty of βτ .

� The predicted value (qi$pr) is the result of a single draw from the stochastic component
given a draw of βτ from its sampling distribution. The distribution of predicted values
should be centered around the same place as the expected values but have larger
variance because it includes both estimation uncertainty and fundamental uncertainty.

� This model does not support conditional prediction.

Output Values

The output of each Zelig command contains useful information which you may view. For ex-
ample, if you run z.out <- zelig(y ~ x, model = "ls", data), then you may examine
the available information in z.out by using names(z.out), see the coefficients by us-
ing z.out$coefficients, and a default summary of information through summary(z.out).
Other elements available through the $ operator are listed below.

� zelig() will return an object z.out, which is of class rq (when tau specifies a single
quantile), rqs (when tau specifies multiple quantiles), or rq.process (when tau is
a value outside of [0, 1]. The rq and rqs objects are supported by Zelig’s prediction
utilities, but rq.process is not. These objects maintain the same functionality that
they have in the quantreg package – for example, one can call the summary or plot

methods on them directly. See documentation for rq from package quantreg for details.
The following information can be extracted directly from the z.out object:

– coefficients: parameter estimates for the explanatory variables.

– residuals: vector of differences between Y and X ′βτ .

– fitted.values: fitted values given by X ′βτ .

– zelig.data: the input data frame if save.data = TRUE.
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� When zelig was called with a single tau value, summary(z.out) returns a summary.rq

object. When zelig was called with τ as a vector, summary(z.out) returns a list of
summary.rq objects. From each summary.rq object you may extract:

– coefficients: the parameter estimates with their 95 percent confidence inter-
vals. The user can also obtain standard errors and p-values by specifying the
se argument to summary. See documentation for summary.rq in the quantreg

package for details.

– rdf: the residual degrees of freedom.

– cov: a k×k matrix of unscaled covariances. To obtain this attribute, the user must
specify cov=TRUE as an argument to summary. See documentation for summary.rq
in the quantreg package for details.

� From the sim() output object s.out, you may extract quantities of interest arranged
as matrices indexed by simulation × x-observation (for more than one x-observation).
Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first differences (or differences in expected values) for the
specified values of x and x1.

How to Cite

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s Statistical
Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Common Frame-
work for Statistical Analysis and Development.” Journal of Computational
and Graphical Statistics, Vol. 17, No. 4 (December), pp. 892-913.

See also

The quantile regression package quantreg by Richard Koenker. In addition, advanced users
may wish to refer to help(rq), help(summary.rq) and help(rq.object).
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