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values if the model is highly parameterized.It is also common to �nd many local maximain such models. Even if we �nd the largest ofthe local maxima we will often �nd the likeli-hood nearly constant in a low-dimensional setcontaining the local maximum.When background information is availablefrom subject-area theory or from previous sta-tistical analysis of similar datasets it may wellbe possible to specify component distribu-tion functions that are not highly parameter-ized and that are believed to represent thetrue shape of the components. We are con-cerned, however, with exploratory data anal-yses where very little may be known a prioriabout the structure of the data. What weneed is a 
exible, but not overly 
exible, fam-ily of multivariate distributions that we canuse as a `default' for the component distribu-tions in the absence of knowledge that wouldjustify a more detailed speci�cation. We drawour inspiration from Latent Class Analysis.



Latent Class Analysis was developed by themathematical sociologist Paul Lazarsfeld whowas interested in making more precise the re-lationship between underlying or latent statesthat were not observable, and directly ob-servable categorical variables indicating thesestates. Latent class models can be describedas follows: we assume the population to bemade up of K groups or sub-populationsG1; : : : ; GK in proportions �1; : : : ; �K. Let xbe the vector of responses on the p variablesthat we observe on each observation, wherethe jth variable can take on levels numberedfrom 1 to Mj . If the ith observation xi hap-pens to come from Gk then its probabilityfunction is given byfk(xi; �k) = pYj=1�kjxiwhere �k is used here and elsewhere in this pa-per to mean the parameters of the distributionof the responses in the kth subpopulation, inthis case being the probabilities f�kjmg thatvariable j takes level m, conditional on theobservation belonging to group k. The over-all probability function is a mixture of theseconditional probability functions:f(xi;�) = KXk=1 �kfk(xi; �k)so that the latent class model is a �nite mix-ture model. The parameter vector � is madeup of the �k and the �kjm as k, j, and m takeon all allowable values. We have overparame-terized here as the �k summed over k and the�kjm summed over m for any �xed j, k willtotal 1.The original method of �tting these mod-els, discussed at some length by Lazarsfeldand Henry [10] for the case of binary vari-ables, was to attempt to solve the system ofequations given by equating the predicted cellprobabilities to the observed cell proportions.The solution of these equations can be di�-cult and Latent Class analysis became much

easier to use when Goodman[4] introduced anew iterative algorithm for the maximum like-lihood �tting of latent class models. It soonbecame clear that this algorithm was a spe-cial case of the very general EM algorithmdiscussed by Dempster, Laird and Rubin[3].2 A general approach tomultivariate mixturemodelsWe will now sketch out a general class of mul-tivariate mixture models for multivariate ob-servations on both categorical and continuousvariables. More speci�cally within this classwe will describe the class of models that we ac-tually use which generalises both latent classand multivariate normal models.We expect the data to be in the form ofan n � p matrix of observations by variableswhich we regard as a random sample from thedistribution f(x) = KXk=1�kfk(x)which is a �nite mixture of the K componentdistributions fk and where �k � 0 , P �k = 1.The distributions fk(x) must be kept simplein structure for two reasons. Firstly we wouldlike the model to give us an understandabledecomposition of the data that aids us in vi-sualizing the data. Secondly the fk must berestricted if we are to be able to have anyhope of identifying the mixing proportions �k,if this were not so then corresponding to anydecomposition f = P�kfk we could consideranother decomposition where, for example,f = f1, �1 = 1 and �2 = : : : = �K = 0. Thesimple structure that we choose is based on lo-cal independence. We suppose that the vectorof variables x = (x1; : : : ; xj; : : : ; xp)0 has beenpartitioned so thatx = (x̂01j : : : jx̂0lj : : : jx̂0L)0:



We will consider component distributions ofthe form fk(x) = LYl=1 fkl(x̂l):We will refer to the subvector of variables x̂las the lth cell of the partition, or simply `thelth cell' if the partition being referred to isclear.The form of local independence that weare assuming is that within each of the Ksubpopulations the variables in the cell x̂lare independent of the variables in x̂l0 for1 � l < l0 � L. The functions fkl form the`atoms' out of which our model is built bycrossing and mixing. The present work usesthe following distributions for the x̂kl, but itshould be stressed that to a considerable de-gree the choice is arbitrary.(a) Discrete DistributionWhere x̂l = fxjg is a 1-dimensional discreterandom variable taking values 1; : : : ;Mj withprobabilities �kl1; : : : ; �klMj . We will denotethis distribution by D(�kl1; : : : ; �klMj ). If allfkl are of this form then f is a latent classmodel.(b) Multivariate NormalWhere x̂l is a pl-dimensional vector of con-tinuous random variables with theNpl(�kl;�kl) distribution.(c) Location ModelWhere x̂l is a 1 + pl dimensional vector ofrandom variables with one discrete variable,xj, and pl continuous variables as elements.The discrete random variable takes values1; : : : ;Mj with probabilities �kl1; : : : ; �klMj .Conditional on the discrete variable takingvalue m the pl continuous random variableshave the multivariate normal distributionNpl(�mkl;�kl).We can write the model for the ith obser-vation asf(xi;�) = KXk=1�k LYl=1 fkl(x̂il; �kl)where �kl consists of the parameters of the dis-tribution fkl as described above. This model

has been used for multivariate data with bothcategorical and continuous variables by Olkinand Tate [14], Krzanowski [7], and Little andSchluchter [12]. A referee has pointed outthat Lawrence and Krzanowski [9] also con-sider the �tting of �nite mixtures of locationmodels. Strictly speaking the location modelin full generality can have several categoricalvariables but for programming convenience wehave reduced this to one. Location models aretermed homogeneous conditional Gaussian byLauritzen and Wermuth[8].Note that in each of the K classes or sub-populations the vector random variable x̂l ofthe lth cell has the same type, either (a) or(b) or (c), but the parameters may vary fromgroup to group. In �tting the model to aparticular data set we have considerable dis-cretion in how we form the x̂l. In generalthe larger the dimensions of the x̂l, the morecovariance parameters must be added to themodel, and the poorer the stability of the pa-rameter estimates. On the other hand toofew covariances in the model will result in apoor �t, which may or may not have conse-quences for the cluster assignments. A rea-sonable model selection strategy appears tobe to begin with the model with complete lo-cal independence and �t it for a few valuesof K, the number of classes. Then variableswith strong within-cluster associations can begrouped together in a cell for the next seriesof �ts, and so on.Although we prefer to think of our mod-els as mixture models it is interesting to notethat they can be described in the languageof graphical models used by Lauritzen andWermuth[8] : if we draw a graph with ver-tices for each variable, and an extra vertexfor the latent variable giving the class assign-ment, then variables in the same cell form aclique (maximal complete subgraph), all vari-ables are connected to the latent variable, andvariables in di�erent cells are connected toeach other only by a path through the latentvariable.



3 Estimation and theMULTIMIX program.As the model has been described, it is a mix-ture of K distributions, each of which can beseen to belong to the exponential family. Itis therefore well suited for maximum likeli-hood estimation of its parameters by the EMalgorithm of Dempster, Laird and Rubin [3],and the Fortran program MULTIMIX has beenwritten by Lynette Hunt to do this. As is wellknown the EM algorithm works by the con-ceptual adjoining of `missing data' onto theobserved data to form the `complete data' forwhich maximum likelihood estimation is sim-ple. In the case of mixtures of distributionsthe `missing data' is an extra variable givingthe assignment of each observation to a class.Rather than adjoining a single variable ofclass assignments, it is more convenient to addK indicator variables corresponding to each oftheK classes. The `complete data', then, con-sists of the n� p array of observed data fxijgand the conceptual n�K array fzikg of classmembership indicators. The indicator vectorsz1; : : : ; zi; : : : ; zn are independently and iden-tically distributed according to a multinomialdistribution generated by one draw on a popu-lation made up of K categories in proportions�1; : : : ; �K.The complete-data speci�cation treats thezi as known leading to the log-likelihoodLC(�)= log0@ nYi=1 KYk=1 24�zikk ( LYl=1 fkl(xi; �kl))zik351A= nXi=1 KXk=1(zik log �k + zik LXl=1 log fkl(xi; �kl))= nXi=1 KXk=1 zik log �k + KXk=1 lk(�k)wherelk(�k) = nXi=1 (zik LXl=1 log fkl(xi; �kl))

= LXl=1 nXi=1 zik log fkl(xi; �kl):Maximising the complete data log-likelihoodLC(�) is equivalent to maximising lk(�k) sep-arately for each cell. The local independenceprinciples embodied in our models thus e�ec-tively reduce the dimensionality of the model-�tting, as well as improving the identi�abilityof the mixture components.The `missing data' formulation of the EMalgorithm has made it possible to extend MUL-TIMIX to situations where the data are miss-ing at random in the sense of Little andRubin[11]. We add the genuinely missingcomponents of the xi to the zi as data to be es-timated at the E-step of the �tting algorithm.More strictly what are estimated at the E-step are the functions of the missing quanti-ties as they appear in the su�cient statisticsfor the complete data log likelihood. Detailsare given by Hunt [6].4 Does MULTIMIX giveuseful clusters? Amedical exampleThere can never be one `correct' method forperforming a vaguely de�ned task like cluster-ing. MULTIMIX clusters are based on maximumlikelihood estimation of a parametric model,so one way to validate the program is to lookat the performance of the program on datagenerated from the model. This was done re-peatedly during the development of the pro-gram as a check on the code and, except wherecoding errors were indeed detected, the pro-gram performed well. Another method, usingreal data, is to withhold some variables froma cluster analysis and then examine whetherthe clusters found have any relationship withthe excluded variables.In this paper we consider the clustering ofcases on the basis of pre-trial covariates alonefor the Prostate Cancer clinical trial data of



Byar and Green [2] reproduced in Andrewsand Herzberg[1], (pp. 261{274).This data was obtained from a randomizedclinical trial comparing four treatments for506 patients with prostatic cancer groupedon clinical criteria into stages 3 and 4 ofthe disease. As reported by Byar and GreenStage 3 represents local extension of the dis-ease without evidence of distant metastasis,while Stage 4 represents distant metastasis asevidenced by elevated acid phosphatase, x-rayevidence, or both. We will compare the clus-ters obtained by MULTIMIX with the clinicalstages, and also consider the trial outcomesfor patients in di�erent clusters.There are twelve pre-trial covariates (Ta-ble 1) measured on each patient, seven maybe taken to be continuous, four to be discrete,and one variable (SG) is an index nearly allof whose values lie between 7 and 15, andwhich could be considered either discrete orcontinuous. We treat SG as a continuous vari-able. A preliminary inspection of the datashowed that the size of the primary tumour(SZ) and serum prostatic acid phosphatase(AP) were both skewed variables. These vari-ables have therefore been transformed, SZ un-der a square root transformation, and APusing a logarithmic transformation, to nor-malize their distributions. (As for correla-tion, skewness over the whole data set doesnot necessarily mean skewness within clustersbut when clusters were formed within-clusterskewness was observed for these variables.)Observations that had missing values in any ofthe twelve pretreatment covariates were omit-ted from further analysis, leaving 475 out ofthe original 506 observations available. In factseveral of the analyses to be described werealso carried out using the version of the pro-gram which allows for missing observations.There was little variation from the results us-ing only the complete observations.Firstly we will consider two-group models:these have especial interest because of theclinical division into Stage 3 and Stage 4.

Model-based classi�cations can be comparedwith this clinical classi�cation.We regard the data as a random samplefrom the distributionf(x;�) = 2Xk=1 �kfk(x; �k);where 2Pk=1�k = 1, and �k � 0, k = 1; 2. Un-der the model with complete local indepen-dence for two clusters, which we will refer toas Model 1, the component distributions willbe of the formfk(xi; �k) = 12Yl=1 fkl(x̂il; �kl);where �kl is the parameter vector for group k,cell l; and k = 1; 2. We see that fkl(x̂il; �kl) isN(�kl; �2kl) for each of the 8 continuous vari-ables, and D(�kl1; : : : ; �klml) for each of the 4categorical variables.This model was �tted iteratively using theEM algorithm with the initial estimates ofthe group parameters being based on thoseresulting from the clinical classi�cation. Asthe likelihood equation for mixture modelsusually has multiple roots, the EM algorithmshould be applied from several starting val-ues in order to search for local maxima. Inorder to search for other maxima, and to dis-pell any suspicion that the estimated param-eters are close to the statistics for the clin-ical classi�cation merely because these wereused as starting values, the algorithm wasrun again 10 more times from initial parame-ter estimates taken from classi�cations gener-ated by randomly splitting the patients intotwo groups. Three solutions of the likelihoodequation were found for Model 1. From 10starting values, 7 converged to a solution witha log-likelihood of -11386.265, the same so-lution that was found using the parametersbased on the clinical classi�cation. Two it-erations converged to a solution with a log-likelihood of -11476.051, and one iteration



Covariate Abbreviation Number of Levels(if categorical)Age AgeWeight WtPerformance rating PF 4Cardiovascular disease history HX 2Systolic Blood pressure SBPDiastolic blood pressure DBPElectrocardiogram code EKG 7Serum haemoglobin HGSize of primary tumour SZIndex of tumour stage and histolic grade SGSerum prostatic acid phosphatase APBone metastases BM 2Table 1: Pretreatment covariates.converged to a solution with a log-likelihoodof -11392.972.Model 1 is relatively easy to �t because ofthe small number of parameters. It is alsoeasy to comprehend because the dependencebetween variables is totally explained by thecluster structure. Once this model has been�tted, we can seek ways of improving the �tby adding more covariance parameters.An observation xi is assigned to the popu-lation to which it has the highest estimatedposterior probability of belonging; that is, weassign to the population Gk if �k(xi; �̂) ��k0(x;�̂) where �k(xi;�)= pr �ithobservation 2 Gkjxi;��= �kfk(xi; �k)=f 2Xk=1 �kfk(xi; �k)g:On examination of the within group corre-lation structure (using the group assignmentresulting from Model 1), we �nd that bothgroups exhibit a high correlation between sys-tolic blood pressure (SBP) and diastolic bloodpressure (DBP), 0.629 for Group 1 and 0.622for Group 2.This correlation is incorporated into a new

model in which variables SBP and DBP aregrouped together in a cell, which we will re-fer to as Model 2. This model is a mix-ture of two component distributions, each ofwhich is a product of 4 discrete distributions,6 univariate normal distributions, and onebivariate normal distribution (for the bloodpressures). The local independence conditionhas been weakened only by adding a covari-ance parameter between the blood pressuresin each of the two clusters. The iterationfor �tting Model 2 may be begun either fromthe Model 1 parameter estimates or from thecluster assignments based on Model 1 or theclinical classi�cation. Using the Model 1 es-timates as starting values, the log-likelihoodconverged to -11268.723. Two other solutions(log-likelihoods -11275.551 and -11358.818) ofthe likelihood equation were also found whenthe EM algorithm was applied from a wide va-riety of starting values in the search of localmaxima.Using the cluster assignment from Model 2,the within group correlation structure is re-examined. There are small correlations be-tween Wt and the blood pressures SBP andDBP, 0.169 and 0.187 for Group 1, and 0.166



and 0.262 for Group 2. A small correlationalso shows up between Wt and HG, 0.193 forGroup 1, and 0.297 for Group 2. We will �ttwo further models involving some of thesecorrelations.The two group mixture model is �tted withthe variables Wt, SBP and DBP grouped to-gether in a cell (Model 3), and with the vari-ables Wt and HG grouped in one cell, andSBP and DBP grouped together in anothercell (Model 4).Table 2 compares the classi�cations of theobservations under the four models with theclinical classi�cation.The model classi�cations emerge as verysimilar to the clinical classi�cation and seemto be little a�ected by the choice of model.In fact only a handful of observations changeclassi�cation under the di�erent models, thesebeing observations 32, 58, 294 and 482. Forobservation 32 the estimated posterior prob-ability of belonging to Group 1 (the less-seriously ill group) was 0.64, 0.58, 0.31 and0.40 under Models 1 to 4 respectively. Thecorresponding probabilities for observations58; 294; and 482 were 0.58, 0.62, 0.43 and0.52; 0.49, 0.49, 0.51 and 0.45; and 0.49, 0.52,0.45 and 0.42. None of these observations isdecisively classi�ed by any of the models, sofrom a clustering viewpoint the groups formedin this example are remarkably stable underthese changes to the model.In the same table we also indicate the im-provement in �t gained by adding covariancesto Model 1 by twice the log-likelihood ra-tio. Compared with Model 1, Model 2 has2 extra parameters - one covariance betweenblood pressures for each of two clusters - andtwice the di�erence in log-likelihoods is 235.1,clearly a signi�cant improvement. Model 3adds 4 extra parameters to Model 2 for a�2 log � gain of 28.0. Model 4 adds covari-ances between Wt and HG to Model 2 gain-ing 29.3 in �2 log � at a cost of 2 parameters.Both Model 3 and Model 4 o�er signi�cantlybetter �tting models than the fully locally in-

dependent model for a modest number of ex-tra parameters. We do not recommend goingtoo far in the direction of adding covarianceparameters for fear of upsetting the stabilityof the model classi�cations. We have tendedto prefer Model 3 on physical grounds be-cause we would expect correlations betweenpatient weight and the two blood pressures.We will remain with the covariance structureof Model 3 as we investigate adding moregroups to the model.4.1 Choosing the number ofgroups.In many situations in practice, there is no apriori knowledge of the number K of compo-nent groups in the data. An obvious way ofapproaching this problem is to use the like-lihood ratio test statistic � to test for thesmallest value of K compatible with the data.However when testing for the number of com-ponents in a mixture, the usual regularity con-ditions do not hold for �2 log � to have itsstandard asymptotic null distribution of �2with the degrees of freedom equal to the di�er-ence between the number of parameters underthe full and reduced models. The main prob-lem is the lack of identi�ability of the param-eters even when the class of mixtures is iden-ti�able. See for example, Hartigan[5], Tit-terington, Smith and Makov[16], and Quinn,McLachlan and Hjort[15].We will use the likelihood ratio test merelya guide to the possible number of underly-ing groups. Another guide can be found inthe estimates of the posterior probabilities ofgroup membership. Clearly a solution whereobservations are clearly assigned to a partic-ular component will be of more practical usethan one in which many observations have ap-preciable probability of membership in each ofseveral classes. It must be remembered, how-ever, that real populations do overlap, andsuch solutions are not necessarily meaning-less. The likelihood ratio test of H0 : K = 1



Stage 3 Stage 4 Number ofModel Group 1 Group 2 Group 1 Group 2 Parameters 2 logLR1 252 21 20 182 55 0.02 252 21 21 181 57 235.13 252 21 18 184 61 263.04 252 21 19 183 59 264.3Table 2: Comparison of 2-group modelsversus Ha : K = 2 suggests the rejectionof the null hypothesis of a single population(�2 log � = 823:2), twice the di�erence in thenumber of parameters being 60. The teststatistics for K = 2 versus K = 3 and forK = 3 versus K = 4 are 188.3 and 175.8 re-spectively. As more groups were included inthe model, there seemed to be an increasingtendency to converge to a suboptimal localmaximum. This was not unexpected, sinceeach additional cluster requires an additionalset of 30 parameters to be estimated. We arecon�dent that the best endpoint was reachedfor the 2 cluster solution, fairly sure for the3 group solution, but are not at all con�dentfor the 4 cluster solution. Although likelihoodsingularities are possible with these models,we encountered no instances where the algo-rithm failed to converge in the sense of our cri-terion. For reasons of time it was not practicalto investigate 5 cluster models as the numberof number of possible model varients coupledwith increased sensitivity to starting valueswould make this a lengthy task.On examination of the posterior probabili-ties for the groups �tted, we �nd (Table 3 )that as the number of groups �tted to the dataincreased, there was a decrease in the numberof observations that are de�nitely assigned toa group (�̂ij � 0:95).The two cluster model does give groupswith better separation. In this analysis, thetwo clusters found largely agree with the clin-ical classi�cation of Stage 3 and Stage 4.When a 3 cluster model was �tted most of

No. of Groups�̂ij 2 3 4.25-.80 33 97 140.80-.95 44 100 134.95-.99 46 63 84.99-1.0 352 215 117Table 3: Posterior probabilities for 2-4 groupsthe Stage 4 patients were assigned to a singlecluster, with the bulk of the Stage 3 patientsbeing divided between the two other clusters.4.2 Clusters and outcomesWe may gain additional insight into the com-position of the groups from examining thecause of death. We will do this only infor-mally as a detailed analysis of the data willtake us too far from our main purpose. In par-ticular we will neglect the treatment e�ects.Following [2], the survival status variable wasrecoded to 4 levels, alive(0), death from pro-static cancer(1), death due to cardiovascularcauses(2), and death from other causes(3).We can see (Table 4) that patients inGroup 1 (corresponding to the clinical clas-si�cation of Stage 3) have a high probabil-ity of being alive or dying from cardiovascularcauses, whereas patients in Group 2 (clinicalclassi�cation of Stage 4) are likely to die fromprostatic cancer.Model 3 uses a partitioning of the variablesin which Wt, SBP, and DBP share a cell but



Group Survival Status0 1 2 31 96 24 92 582 41 97 46 21Table 4: Survival Status for Model 3 classi�-cations Group Survival Status0 1 2 31 56 18 31 212 38 91 44 183 43 12 63 40Table 5: Survival Status for a 3-group modelall other variables are locally independent. InTable 5 we consider the 3 group model withthe same partitioning. Group 2 for this modelcorresponds roughly to the clinical classi�ca-tion of Stage 4 (Group 2 in the 2 cluster so-lution). The patients in Group 1 have a highprobability of being alive at the end of thetrial whereas the Group 3 patients have ahigh probability of death from cardiovascularcauses, and similar moderate probabilities ofdeath from other causes and alive at the endof the trial.The post-treatment variable `months offollow-up', provides another way to gain in-sight into the composition of the group struc-ture as it can be regarded as a surrogatefor survival time. Because each patient inthe study was followed up for at least fouryears unless death occured, we will catego-rize this variable to survival time greater than48 months, and survival time less than orequal to 48 months. With the Group 1patients, 47% survive for greater than 48months, whereas only 26.6% of the Group 2patients survive for greater than 48 months.It is intriguing to have a closer look at thepatients whose classi�cation by Model 3 is in

Survival TimeGroup �48 months >48 months1 9 92 18 3Table 6: Survival time for the observationsclassi�ed by Model 3 to a di�erent group thanthe clinical classi�cationGroup Survival Status0 1 2 31 7 3 3 52 2 10 5 4Table 7: Survival status for the observationsclassi�ed by Model 3 to a di�erent group thanthe clinical classi�cationcon
ict with the clinical classi�cation, in Ta-ble 6 we tabulate survival time against themodel classi�cation for these patients alone.In Table 7 survival status information issummarised for the same patients.Tables 6 & 7 suggest a more favourable out-come for Stage 4 patients classi�ed by themodel into Group 1 than for Stage 3 pa-tients classi�ed into Group 2. In short, themodel classi�cation gives a better indicationof prognosis than the clinical classi�cation,the patients in Group 2 being likely to suc-cumb to prostatic cancer, and the patients inGroup 1 more likely to survive, or die fromother causes.5 Scope of the methodFor fully categorical datasets the method ofLatent Class Analysis has become a popu-lar method of discovering underlying clusterstructure. The class of models that we haveintroduced and utilized in this paper forms anatural extension to this class to datasets con-taining both categorical and continuous vari-



ables. Like Latent Class models, our modelsmake free use of local independence to reducethe number of parameters in the model andto lead to descriptions of the clusters that canbe easily understood. Provision is made, how-ever, for the cautious introduction of within-cluster covariances.Because the EM algorithm is used to �t themodels it is feasible to �t them to datasetswith many variables and observations, so thatfor many applications �tting these models be-comes an alternative to conventional clusteranalysis algorithms. This may be particularlyattractive in situations where data is miss-ing, because the program MULTIMIX has beenwritten to cope with data missing at randomwhereas missing data often presents problemsfor deterministic clustering algorithms.The choice of discrete and multivariate nor-mal distributions as the `atoms' out of whichour models are built has been made con-sciously in an e�ort to be bland and generic,but in situations where more was knownabout the nature of the distributions in sub-populations other types of distributions couldbe used in place of these.Either taken as we have presented them, ormodi�ed to incorporate subject-area knowl-edge of distributions and parameters we be-lieve that multivariate �nite mixture modelswill prove an invaluable tool in exploring largecomplex datasets.References[1] D. A. Andrews and A. M. Herzberg.Data: a collection of problems frommany �elds for the student and researchworker. Springer-Verlag, New York,1985.[2] D. P. Byar and S. B. Green. The choiceof treatment for cancer patients basedon covariate information : application toprostate cancer. Bull. Cancer (Paris),67:477{490, 1980.
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