
GRAPHS package for Maxima
Andrej Vodopivec

andrej.vodopivec@gmail.com

Introduction
The GRAPHS package provides graph and digraph data structure for Maxima. Graphs and digraphs
are simple (have no multiple edges nor loops), although digraphs can have a directed edge from u to
v and a directed edge from v to u.

This document gives basic documentation about implementation of data structures and lists all
implemented functions.

There are some examples at the end of this paper (some examples are screen images taken from
wxMaxima, the output will look a little different in other interfaces).

Installation
The GRAPHS package has been tested with Maxima 5.12. It should also work with Maxima 5.11
but you should also install the draw package.

Unpack the graph.zip archive somewhere in you Maxima path and then load the package into
Maxima with load(“graphs/graphs”).

Data structures
A graph is an incidence structure G=(V,E) where V is a finite set of vertices and E set of edges. For
undirected graphs, an edge e is a 2-set {u, v} of vertices u, v from V. For a directed graph, an edge is
an ordered pair (u, v) of vertices u, v from V. We call a directed edge an arc.

Undirected graphs are represented by a graph data structure and directed graphs are represented
by a digraph. Internally graphs are represented by adjacency lists, implemented as lisp structures.
Vertices are identified by their ids (an id is an integer). Labels can be assigned to vertices of
graphs/digraphs and weights can be assigned to edges/arcs of graphs/digraphs.

Creating graphs and digraphs
The first set of functions create special classes of graphs:

• dodecahedron_graph();
• wheel_graph(n);
• circulant_graph(n, d);
• petersen_graph(): returns the Petersen graph;

• petersen_graph(n, d): returns the generalized Petersen graph Pn,d;

• cycle_graph(n): returns a cycle on n vertices;

• cycle_digraph(n): returns a directed cycle on n vertices;

• path_graph(n): returns a path on n vertices;

• path_digraph(n): returns a directed path on n vertices;

• complete_graph(n): returns a complete graph on n vertices;

mailto:andrej.vodopivec@gmail.com

• empty_graph(n): returns an empty graph on n vertices;

• new_graph(): returns a new graph with no vertices or edges;

• random_graph(n, p): returns a random graph on n vertices – each edge is present with
probability p;

• random_graph1(n,m): returns a random graph on n vertices with random m edges;

• random_regular_graph(n, [d]): returns a random d-regular graph on n vertices; if
n is not given, it returns a random 3-regular graph (if d is odd, n should be even),

• random_digraph(n, p): returns a random directed graph on n vertices – each arc is
present with probability p;

• random_tournament(n): returns a random tournament on n vertices;

• random_network(n, p, w): returns a random network on n vertices; each arc is
present with probability p; each present arc has a weight in the range [0, w];

• random_tree(n): returns a random tree on n vertices.

The second set of functions create graphs form other graphs or structures:

• graph_product(g1, g2): returns the cross product of graphs g1 and g2;

• line_graph(g): returns the line graph of graph g;

• complement_graph(g): returns the complement of graph g;

• graph_union(g1, g2): returns the union of graph g1 and g2;

• underlying_graph(g): returns the underlying graph of a directed graph g;

• from_adjacency_matrix(A): returns the graph represented by adjacency matrix A;

• induced_subgraph(V, g): returns the subgraph of g induced on the subset V of
vertices of graph g;

• copy_graph(g): returns a copy of the graph g;

• create_graph(v_list, e_list, [dir]): creates a new graph; v_list can be a list
of vertices [v1,...,vn] or a list of vertices with labels [[v1, l1], ..., [vn,ln]] or an integer n and
the vertices are then taken as [0,1,...,n]; e_list is a list of edges [e1,...,em] or a list of edges
with weights [[e1, w1], ...,[em,wm]]; dir is an optional argument – if it is not false the graph
will be directed.

Graph properties
This section describes functions for examining graph properties. When a property makes sense for
both graphs and digraphs, the same function is used for both, but some functions can only be used
for graphs or only for digraphs.

Functions for examining properties of both graphs and digraphs:

• is_edge_in_graph(e, g): tests if the edge e is in the graph g;

• is_vertex_in_graph(v, g): tests if the vertex v is in the graph g;

• is_graph(g);

• is_digraph(g);

• is_graph_or_digraph(g);

• graph_size(g): returns the number of vertices of the graph g;

• graph_order(g): returns the number of edges/arcs of the graph g;

• vertices(g): returns the list of vertices of the graph g;

• edges(g): returns the list of edges/arcs of the graph g;

• set_vertex_label(v, l, g): sets the label of vertex v in g to l;

• get_vertex_label(v, g): returns the label of the vertex v in g or false if v has no
label;

• clear_vertex_label(v, g): clears the label of vertex v in g;

• set_edge_weight(e, w, g): sets the weight of edge/arc e in g to w;

• get_edge_weight(e, g, [ifnot]): returns the weight of edge/arc e in g of
false if e has no weight; the default weight of edges is 1; if the edge is not in the graph, it
produces an error or returns the optional argument ifnot.

• clear_edge_weight(e, g): clears the weight of edge/arc e in g;

• vertex_distance(u, v, g): returns the distance between u and v in g;

• shortest_path(u, v, g): returns a list of consecutive vertices in the shortest path
from u to v in g;

• hamilton_cycle(g): returns a Hamilton cycle in the graph g or an empty list if no
Hamilton cycles exist;

• hamilton_path(g): returns a Hamilton path in the graph g or an empty list if no
Hamilton paths exist.

Functions for examining properties of graphs:

• is_connected(g): returns true if g is a connected graph and false otherwise;

• connected_components(g): returns a list the vertex sets of connected components of
the graph g;

• is_biconnected(g): returns true if g is a 2-connected graph and false otherwise;

• biconnected_components(g): returns a list of the vertex sets of 2-connected
components of g;

• adjacency_matrix(g): returns the adjacency matrix of graph g;

• laplacian_matrix(g): returns the Laplacian matrix of graph g;

• graph_charpoly(g, x): returns the characteristic polynomial of the adjacency matrix
of the graph g;

• graph_eigenvalues(g): returns the eigenvalues of graph g – the output has the same
format as maxima eigenvalues function;

• max_clique(g): returns a maximum clique in the graph g;

• max_independent_set(g): returns a maximum independent set in the graph g;

• neighbors(v, g): returns the list of neighbors of vertex v in graph g;

• vertex_degree(v, g): returns the degree of vertex v in graph g;

• degree_sequence(g): returns a list of degrees of vertices of g;

• min_degree(g): returns a list [d, v], where v is a vertex of minimum degree d in g;

• max_degree(g): returns a list [d, v], where v is a vertex of maximum degree d in g.

• average_degree(g): returns the average degree of the graph g;

• bipartition(g): returns a list [A, B], where A and B are bipartition of vertices of g;

• is_bipartite(g): returns true if g is bipartite and false otherwise;

• girth(g): returns the length of the shortest cycle in g;

• odd_girth(g): returns the length of the shortest odd cycle in g;

• diameter(g): returns the diameter of g;

• radius(g): returns the radius of g;

• is_tree(g): returns true if g is a tree and false otherwise;

• minimum_spanning_tree(g): returns the minimum spanning tree of a weighted graph
g – if there is no weight on an edge, weight 1 is assumed;

• vertex_coloring(g): returns the optimal coloring of vertices of the graph g; return
value is [chromatic_number, [[v1, c1],...,[vn, cn]]] where chromatic_number is the number of
different numbers and ci is the color of the vertex vi in an optimal coloring;
vertex_coloring uses a backtracking algorithm to color the graph;

• chromatic_number(g): return the chromatic number of graph g;

• edge_coloring(g): returns an optimal coloring of edges of the graph g; return value is
[chromatic_index, [[e1,c1],...,[em,cm]]], where chromatic_index is the number of colors in an
optimal coloring and ci is the color of edge ei; edge_coloring uses
vertex_coloring on the line graph of g;

• chromatic_index(g): returns the chromatic index of the graph g.

Functions for examining properties of digraphs:

• strong_components(g): returns the strong components of a digraph g,

• is_sconnected(g): returns true is digraph g is strongly connected,

• in_neighbors(v, g): returns the list of in-neighbors of vertex v in digraph g;

• out_neighbors(v, g): returns the list of in-neighbors of vertex v in digraph g;

• vertex_in_degree(v, g): returns the in-degree of vertex v in digraph g;

• vertex_out_degree(v, g): returns the out-degree of vertex v in digraph g;

• max_flow(net, source, sink): returns a maximum flow through network net
from source to sink; return value is [val, [[e1, fl1], [e2, fl2], ..., [em, flm]]], where val is the
value of the flow and fli is the value of the flow on edge ei.

Functions for modifying graphs
Note that these functions modify the input graph and return done on success.

• add_vertex(v, g): adds a new vertex v to (di)graph g;

• add_vertices(vl, g): adds vertices from a list vl to (di)graph g;

• add_edge(e, g): adds a new edge e to (di)graph g;

• add_edges(el, g): adds edges from a list el to (di)graph g;

• connect_vertices(v1, v2, g): add edges between v1 and v2; v1 and v2 can be
lists or vertices or a single vertex; if v1 and v2 are lists, all edges between v1 and v2 are
added;

• remove_vertex(v, g): removes the vertex v from (di)graph g;

• remove_edge(e, g): removes the edge e from (di)graph g;

• contract_edge(e, g): contracts the edge e in graph g.

Visualizing graphs
There is a function draw_graph, which is used to draw graphs. It can use graphviz programs to
draw graphs nicely (graphviz programs are available from http://www.graphviz.org). It accepts
some optional arguments:

• program: one of graphviz programs (dot, neato, twopi, circ, fdp) if graphiviz is installed or
circular; the default is neato, which implies that graphviz should be installed for
draw_graph to work, if graphviz is not installed only the circular option is supported,

• vertex_type: see point_type in draw package,

• show_id: show the ids for vertices,

• terminal: gnuplot terminal (one of screen, wxmaxima, png, ps),

• file_name: if terminal is png or ps, the name of the file in which to plot.

Examples:

http://www.graphviz.org/

Data structures
The GRAPHS package exposes the underlying lisps datastructure hashtable. Functions for using
hasthables:

• hash_table(): creates the hashtable

• set_hash(elt, ht, val): enters the value val under the key elt into the hashtable ht;

• get_hash(elt, ht, [ifnot]): gets the value under the key elt in the hashtable ht;
if the key elt is not in ht then it returns false or the optional argument ifnot.

• hash_table_data(ht): returns the data stored in the hashtable ht as a list [key1->val1,
key2->val2,...,keyn->valn].

Example:

(%i1) load("graphs/graphs")$
Loading graph theory package 'graphs', version 1.0.
(%i2) ht : hash_table()$
(%i3) set_hash(1, ht, 4.1)$
(%i4) get_hash(1, ht);
(%o4) 4.1
(%i5) get_hash(2, ht);
(%o5) false
(%i6) get_hash(2, ht, inf);
(%o6) inf
(%i8) set_hash(2, ht, [1,2,3]);
(%o8) [1,2,3]
(%i9) hash_table_data(ht);
(%o9) [2->[1,2,3],1->4.1]

Example – the Petersen graph
In this section we investigate the properties of the Petersen graph.

(%i1) load("graphs/graphs")$
Loading graph theory package 'graphs', version 1.0.
(%i2) p: petersen_graph();
(%o2) Structure [GRAPH]
(%i3) vertices(p);
(%o3) [9,8,7,6,5,4,3,2,1,0]
(%i4) edges(p);
(%o4) [[0,4],[6,9],[4,9],[3,4],[5,8],[3,8],[2,3],[7,9],[2,7],
[1,2],[6,8],[1,6],[0,1],[5,7],[0,5]]
(%i5) print_graph(p);
Graph on 10 vertices with 15 edges.
Adjacencies:
 9 : 6 4 7
 8 : 5 3 6
 7 : 9 2 5
 6 : 9 8 1
 5 : 8 7 0
 4 : 0 9 3
 3 : 4 8 2
 2 : 3 7 1
 1 : 2 6 0
 0 : 4 1 5
(%i6) neighbors(0, p);
(%o6) [4,1,5]
(%i7) girth(p);
(%o7) 5
(%i8) chromatic_index(p);
(%o8) 4
(%i9) max_independent_set(p);
(%o9) [0,2,8,9]
(%i10) hamilton_cycle(p);
(%o10) []
(%i11) hamilton_path(p);
(%o11) [0,5,7,2,1,6,8,3,4,9]
(%i12) vertex_distance(1, 5, p);
(%o12) 2
(%i13) shortest_path(1, 5, p);
(%o13) [1,0,5]
(%i14) graph_eigenvalues(p);
(%o14) [[3,-2,1],[1,4,5]]
(%i15) factor(graph_charpoly(p, x));
(%o15) (x-3)*(x-1)^5*(x+2)^4

Examples – create_graph function
Example for the create_graph function:

Example – creating graphs
Draw the graph C5P4

Draw the graph W6 and its line graph.

Example – connectivity
We investigate the connectivity of the graph on the image:

(%i1) load("graphs/graphs")$
Loading graph theory package 'graphs', version 1.0.
(%i2) g : create_graph(
 [1,2,3,4,5,6,7],
 [
 [1,2], [2,3], [1,3],
 [4,5], [5,6], [4,6],
 [1,4], [6,7]
]
)$
(%i3) is_connected(g);
(%o3) true
(%i4) is_biconnected(g);
(%o4) false
(%i5) biconnected_components(g);
(%o5) [[6,7],[4,5,6],[1,4],[1,2,3]]

Example – max-flow problem
Here we create a network and compute the max-flow over it.

(%i1) load("graphs/graphs")$
Loading graph theory package 'graphs', version 1.0.
(%i5) net : create_graph(
 [1,2,3,4,5,6], /* the list of vertices in the network */
 [
 [[1,2], 1.2], /* the list of arcs with weights */
 [[1,3], 2.1],
 [[2,4], 2.3],
 [[2,5], 1.2],
 [[3,4], 4,1],
 [[3,5], 1.1],
 [[5,6], 0.5],
 [[4,6], 1.2]
],
 'directed /* network is a directed graph */
);
(%o5) Structure [DIGRAPH]
(%i6) max_flow(net, 1, 6);
(%o6) [1.7,[[[1,2],1.2],[[1,3],0.5],[[2,4],1.2],[[2,5],0],
[[3,4],0],[[3,5],0.5],[[5,6],0.5],[[4,6],1.2]]]

Figure of the network with the dot program:

Example – graphs from matrices

(%i1) load("graphs/graphs")$
Loading graph theory package 'graphs', version 1.0.
(%i2) M : genmatrix(
 lambda([i,j], if remainder(abs(i-j), 5)=2
 then 1
 else 0),
 30, 30
)$
(%i3) g : from_adjacency_matrix(M)$
(%i4) girth(g);
(%o4) 4
(%i5) odd_girth(g);
(%o5) 7
(%i6) chromatic_number(g);
(%o6) 3
(%i7) chromatic_index(g);
(%o7) 7
(%i8) max_degree(g);
(%o8) [7,27]
(%i9) vertex_degree(27, g);
(%o9) 7
(%i10) max_independent_set(g);
(%o10) [0,4,5,9,10,14,15,19,20,24,25,28,29]
(%i11) radius(g);
(%o11) 4
(%i12) vrt : sublist(vertices(g), evenp)$
(%i13) h : induced_subgraph(vrt, g)$
(%i14) degree_sequence(h);
(%o14) [3,3,3,3,3,3,4,4,4,4,4,4,4,4,4]

The graph g:

Example – BFS tree
Visit vertices of the tree along a BFS tree

(%i1) load("graphs/graphs")$
Loading graph theory package 'graphs', version 1.0.
(%i2) bfs(g) := block(
 [Visited, Active, u, v, prev],
 /* a list of active vertices – initialy add the first vertex
 to the list of active vertices */
 Active : [first(vertices(g))],
 /* a list of already visited vertices */
 Visited : [],
 /* prev stores the back edges */
 prev : hash_table(),
 /* repeat while we still have active vertices */
 while length(Active) > 0 do (
 /* visit the first active vertex */
 u : first(Active),
 Active : rest(Active),
 Visited : cons(u, Visited),

 /* add the vertex to the tree */
 if get_hash(u, prev) # false then
 Tree : cons([get_hash(u, prev), u], Tree)
 else
 Tree : cons(u, Tree),

 /* check all neighbors of u – if there is some neighbor
 which has not been visited and is not active, add it
 to the list of active vertices */
 for v in neighbors(u, g) do (
 if not(member(v, Visited)) and
 not(member(v, Active))
 then (
 set_hash(v, prev, u),
 Active : endcons(v, Active)
)
)
),
 reverse(Tree)
)$
(%i3) p : petersen_graph()$
(%i4) bfs(p);
/* the edges of a BFS tree with the root 9 */
(%o4) [9,[9,6],[9,4],[9,7],[6,8],[6,1],[4,0],[4,3],[7,2],[7,5]]

Example – minimum cost spanning tree
In this section we implement an O(n2) algorithm for computing the minimum cost spanning tree.

(%i1) load("graphs/graphs")$
Loading graph theory package 'graphs', version 1.0.
(%i2) mcsp(g) := block(
 [V : vertices(g), U, v, u, n : graph_size(g), UmV, close,
 Tree : []],
 /* We grow the tree from an arbitrary vertex and in each step we
 add one vertex to the tree. U is the set of vertices in the
 tree, UmV is the set of vertices not in the Tree and tree is
 the set of edges in the tree */
 U : [V[1]],
 UmV : delete(U[1], V),
 /* In the hash table close we have for each vertex v the
 vertex closest to v in U */
 close : hash_table(),
 for v in UmV do set_hash(v, close, U[1]),
 /* Repeat until all vertices of g are in the tree */
 while length(U) < n do block(
 [closest, dist : inf],
 /* Choose a vertex in UmV closest to U */
 for v in UmV do (
 if get_edge_weight([v, get_hash(v, close)], g, inf) <
 dist
 then (
 dist:get_edge_weight([v, get_hash(v, close)], g),
 closest : v
)
),
 /* Add this vertex to the tree */
 U : cons(closest, U),
 UmV : delete(closest, UmV),
 Tree : cons([closest, get_hash(closest, close)], Tree),
 /* Update the hash table close */
 for v in UmV do (
 if get_edge_weight([v, closest], g, inf) <
 get_edge_weight([v, get_hash(v, close)], g, inf)
 then
 set_hash(v, close, closest)
)
),
 Tree
)$
(%i3) p : petersen_graph();
(%o3) Structure [GRAPH]
(%i4) for e in edges(p) do set_edge_weight(e, random(100), p);
(%o4) done
(%i5) mcsp(p);
(%o5) [[3,2],[2,1],[1,0],[7,5],[5,8],[8,6],[0,4],[4,9],[6,9]]

	Introduction
	Installation
	Data structures
	Creating graphs and digraphs
	Graph properties
	Functions for modifying graphs
	Visualizing graphs
	Data structures
	Example – the Petersen graph
	Examples – create_graph function
	Example – creating graphs
	Example – connectivity
	Example – max-flow problem
	Example – graphs from matrices
	Example – BFS tree
	Example – minimum cost spanning tree

