Householder QR decomposition of a matrix. More...
#include <HouseholderQR.h>
Public Types | |
enum | { RowsAtCompileTime, ColsAtCompileTime, Options, MaxRowsAtCompileTime, MaxColsAtCompileTime } |
typedef internal::plain_diag_type < MatrixType >::type | HCoeffsType |
typedef HouseholderSequence < MatrixType, HCoeffsType > ::ConjugateReturnType | HouseholderSequenceType |
typedef MatrixType::Index | Index |
typedef Matrix< Scalar, RowsAtCompileTime, RowsAtCompileTime,(MatrixType::Flags &RowMajorBit)?RowMajor:ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime > | MatrixQType |
typedef _MatrixType | MatrixType |
typedef MatrixType::RealScalar | RealScalar |
typedef internal::plain_row_type < MatrixType >::type | RowVectorType |
typedef MatrixType::Scalar | Scalar |
Public Member Functions | |
MatrixType::RealScalar | absDeterminant () const |
Index | cols () const |
HouseholderQR & | compute (const MatrixType &matrix) |
const HCoeffsType & | hCoeffs () const |
HouseholderSequenceType | householderQ () const |
HouseholderQR () | |
Default Constructor. | |
HouseholderQR (Index rows, Index cols) | |
Default Constructor with memory preallocation. | |
HouseholderQR (const MatrixType &matrix) | |
MatrixType::RealScalar | logAbsDeterminant () const |
const MatrixType & | matrixQR () const |
Index | rows () const |
template<typename Rhs > | |
const internal::solve_retval < HouseholderQR, Rhs > | solve (const MatrixBase< Rhs > &b) const |
Protected Attributes | |
HCoeffsType | m_hCoeffs |
bool | m_isInitialized |
MatrixType | m_qr |
RowVectorType | m_temp |
Householder QR decomposition of a matrix.
MatrixType | the type of the matrix of which we are computing the QR decomposition |
This class performs a QR decomposition of a matrix A into matrices Q and R such that
by using Householder transformations. Here, Q a unitary matrix and R an upper triangular matrix. The result is stored in a compact way compatible with LAPACK.
Note that no pivoting is performed. This is not a rank-revealing decomposition. If you want that feature, use FullPivHouseholderQR or ColPivHouseholderQR instead.
This Householder QR decomposition is faster, but less numerically stable and less feature-full than FullPivHouseholderQR or ColPivHouseholderQR.
typedef internal::plain_diag_type<MatrixType>::type HCoeffsType |
typedef HouseholderSequence<MatrixType,HCoeffsType>::ConjugateReturnType HouseholderSequenceType |
typedef MatrixType::Index Index |
typedef Matrix<Scalar, RowsAtCompileTime, RowsAtCompileTime, (MatrixType::Flags&RowMajorBit) ? RowMajor : ColMajor, MaxRowsAtCompileTime, MaxRowsAtCompileTime> MatrixQType |
typedef _MatrixType MatrixType |
typedef MatrixType::RealScalar RealScalar |
typedef internal::plain_row_type<MatrixType>::type RowVectorType |
typedef MatrixType::Scalar Scalar |
anonymous enum |
|
inline |
Default Constructor.
The default constructor is useful in cases in which the user intends to perform decompositions via HouseholderQR::compute(const MatrixType&).
|
inline |
Default Constructor with memory preallocation.
Like the default constructor but with preallocation of the internal data according to the specified problem size.
|
inline |
References HouseholderQR< _MatrixType >::compute().
MatrixType::RealScalar absDeterminant | ( | ) | const |
References abs(), and eigen_assert.
|
inline |
References HouseholderQR< _MatrixType >::m_qr.
HouseholderQR< MatrixType > & compute | ( | const MatrixType & | matrix | ) |
References Eigen::internal::householder_qr_inplace_blocked(), and HouseholderQR< _MatrixType >::rows().
Referenced by HouseholderQR< _MatrixType >::HouseholderQR().
|
inline |
References HouseholderQR< _MatrixType >::m_hCoeffs.
|
inline |
MatrixType::RealScalar logAbsDeterminant | ( | ) | const |
References eigen_assert.
|
inline |
References eigen_assert, HouseholderQR< _MatrixType >::m_isInitialized, and HouseholderQR< _MatrixType >::m_qr.
|
inline |
References HouseholderQR< _MatrixType >::m_qr.
Referenced by HouseholderQR< _MatrixType >::compute().
|
inline |
This method finds a solution x to the equation Ax=b, where A is the matrix of which *this is the QR decomposition, if any exists.
b | the right-hand-side of the equation to solve. |
This method just tries to find as good a solution as possible. If you want to check whether a solution exists or if it is accurate, just call this function to get a result and then compute the error of this result, or use MatrixBase::isApprox() directly, for instance like this:
This method avoids dividing by zero, so that the non-existence of a solution doesn't by itself mean that you'll get inf
or nan
values.
If there exists more than one solution, this method will arbitrarily choose one.
Example:
Output:
Here is the matrix m: 0.68 0.597 -0.33 -0.211 0.823 0.536 0.566 -0.605 -0.444 Here is the matrix y: 0.108 -0.27 0.832 -0.0452 0.0268 0.271 0.258 0.904 0.435 Here is a solution x to the equation mx=y: 0.609 2.68 1.67 -0.231 -1.57 0.0713 0.51 3.51 1.05
References eigen_assert, and HouseholderQR< _MatrixType >::m_isInitialized.
|
protected |
Referenced by HouseholderQR< _MatrixType >::hCoeffs(), and HouseholderQR< _MatrixType >::householderQ().
|
protected |
|
protected |
|
protected |