Public Types | Public Member Functions | Protected Member Functions | Protected Attributes
TransposeImpl< MatrixType, Sparse > Class Template Reference

#include <SparseTranspose.h>

+ Inheritance diagram for TransposeImpl< MatrixType, Sparse >:

List of all members.

Public Types

enum  
typedef internal::conditional
< NumTraits< Scalar >
::IsComplex, CwiseUnaryOp
< internal::scalar_conjugate_op
< Scalar >, Eigen::Transpose
< const Transpose< MatrixType >
> >, Transpose< const
Transpose< MatrixType >
> >::type 
AdjointReturnType
typedef EigenBase< Transpose
< MatrixType > > 
Base
typedef internal::traits
< Transpose< MatrixType >
>::Index 
Index
typedef
internal::add_const_on_value_type_if_arithmetic
< typename
internal::packet_traits
< Scalar >::type >::type 
PacketReturnType
typedef
internal::packet_traits
< Scalar >::type 
PacketScalar
typedef SparseMatrix< Scalar,
Flags &RowMajorBit?RowMajor:ColMajor > 
PlainObject
typedef internal::traits
< Transpose< MatrixType >
>::Scalar 
Scalar
typedef SparseMatrixBase StorageBaseType
typedef internal::traits
< Transpose< MatrixType >
>::StorageKind 
StorageKind

Public Member Functions

void addTo (Dest &dst) const
const AdjointReturnType adjoint () const
void applyThisOnTheLeft (Dest &dst) const
void applyThisOnTheRight (Dest &dst) const
const CwiseBinaryOp
< CustomBinaryOp, const
Transpose< MatrixType >, const
OtherDerived > 
binaryExpr (const Eigen::SparseMatrixBase< OtherDerived > &other, const CustomBinaryOp &func=CustomBinaryOp()) const
internal::cast_return_type
< Transpose< MatrixType >
, const CwiseUnaryOp
< internal::scalar_cast_op
< typename internal::traits
< Transpose< MatrixType >
>::Scalar, NewType >, const
Transpose< MatrixType >
> >::type 
cast () const
SparseInnerVectorSet
< Transpose< MatrixType >, 1 > 
col (Index j)
const SparseInnerVectorSet
< Transpose< MatrixType >, 1 > 
col (Index j) const
Index cols () const
ConjugateReturnType conjugate () const
Transpose< MatrixType > & const_cast_derived () const
const Transpose< MatrixType > & const_derived () const
const CwiseUnaryOp
< internal::scalar_abs_op
< Scalar >, const Transpose
< MatrixType > > 
cwiseAbs () const
const CwiseUnaryOp
< internal::scalar_abs2_op
< Scalar >, const Transpose
< MatrixType > > 
cwiseAbs2 () const
const CwiseBinaryOp
< std::equal_to< Scalar >
, const Transpose< MatrixType >
, const OtherDerived > 
cwiseEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< std::binder1st
< std::equal_to< Scalar >
>, const Transpose
< MatrixType > > 
cwiseEqual (const Scalar &s) const
const CwiseUnaryOp
< internal::scalar_inverse_op
< Scalar >, const Transpose
< MatrixType > > 
cwiseInverse () const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Transpose
< MatrixType >, const
OtherDerived > 
cwiseMax (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_max_op
< Scalar >, const Transpose
< MatrixType >, const
ConstantReturnType > 
cwiseMax (const Scalar &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Transpose
< MatrixType >, const
OtherDerived > 
cwiseMin (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_min_op
< Scalar >, const Transpose
< MatrixType >, const
ConstantReturnType > 
cwiseMin (const Scalar &other) const
const CwiseBinaryOp
< std::not_equal_to< Scalar >
, const Transpose< MatrixType >
, const OtherDerived > 
cwiseNotEqual (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const
EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE 
cwiseProduct (const MatrixBase< OtherDerived > &other) const
const CwiseBinaryOp
< internal::scalar_quotient_op
< Scalar >, const Transpose
< MatrixType >, const
OtherDerived > 
cwiseQuotient (const Eigen::SparseMatrixBase< OtherDerived > &other) const
const CwiseUnaryOp
< internal::scalar_sqrt_op
< Scalar >, const Transpose
< MatrixType > > 
cwiseSqrt () const
Transpose< MatrixType > & derived ()
const Transpose< MatrixType > & derived () const
Scalar dot (const MatrixBase< OtherDerived > &other) const
Scalar dot (const SparseMatrixBase< OtherDerived > &other) const
const EIGEN_CWISE_PRODUCT_RETURN_TYPE (Transpose< MatrixType >, OtherDerived) cwiseProduct(const Eigen
const internal::eval
< Transpose< MatrixType >
>::type 
eval () const
void evalTo (Dest &dst) const
void evalTo (MatrixBase< DenseDerived > &dst) const
const ImagReturnType imag () const
NonConstImagReturnType imag ()
Index innerSize () const
SparseInnerVectorSet
< Transpose< MatrixType >, 1 > 
innerVector (Index outer)
const SparseInnerVectorSet
< Transpose< MatrixType >, 1 > 
innerVector (Index outer) const
SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
innerVectors (Index outerStart, Index outerSize)
const SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
innerVectors (Index outerStart, Index outerSize) const
bool isApprox (const SparseMatrixBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isApprox (const MatrixBase< OtherDerived > &other, RealScalar prec=NumTraits< Scalar >::dummy_precision()) const
bool isRValue () const
bool isVector () const
Transpose< MatrixType > & markAsRValue ()
SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
middleCols (Index start, Index size)
const SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
middleCols (Index start, Index size) const
SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
middleRows (Index start, Index size)
const SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
middleRows (Index start, Index size) const
Index nonZeros () const
RealScalar norm () const
const ScalarMultipleReturnType operator* (const Scalar &scalar) const
const ScalarMultipleReturnType operator* (const RealScalar &scalar) const
const CwiseUnaryOp
< internal::scalar_multiple2_op
< Scalar, std::complex< Scalar >
>, const Transpose
< MatrixType > > 
operator* (const std::complex< Scalar > &scalar) const
const
SparseSparseProductReturnType
< Transpose< MatrixType >
, OtherDerived >::Type 
operator* (const SparseMatrixBase< OtherDerived > &other) const
const SparseDiagonalProduct
< Transpose< MatrixType >
, OtherDerived > 
operator* (const DiagonalBase< OtherDerived > &other) const
const
SparseDenseProductReturnType
< Transpose< MatrixType >
, OtherDerived >::Type 
operator* (const MatrixBase< OtherDerived > &other) const
Transpose< MatrixType > & operator*= (const Scalar &other)
Transpose< MatrixType > & operator*= (const SparseMatrixBase< OtherDerived > &other)
Transpose< MatrixType > & operator+= (const SparseMatrixBase< OtherDerived > &other)
const CwiseUnaryOp
< internal::scalar_opposite_op
< typename internal::traits
< Transpose< MatrixType >
>::Scalar >, const Transpose
< MatrixType > > 
operator- () const
Transpose< MatrixType > & operator-= (const SparseMatrixBase< OtherDerived > &other)
const CwiseUnaryOp
< internal::scalar_quotient1_op
< typename internal::traits
< Transpose< MatrixType >
>::Scalar >, const Transpose
< MatrixType > > 
operator/ (const Scalar &scalar) const
Transpose< MatrixType > & operator/= (const Scalar &other)
Index outerSize () const
RealReturnType real () const
NonConstRealReturnType real ()
SparseInnerVectorSet
< Transpose< MatrixType >, 1 > 
row (Index i)
const SparseInnerVectorSet
< Transpose< MatrixType >, 1 > 
row (Index i) const
Index rows () const
const SparseSelfAdjointView
< Transpose< MatrixType >
, UpLo > 
selfadjointView () const
SparseSelfAdjointView
< Transpose< MatrixType >
, UpLo > 
selfadjointView ()
Index size () const
RealScalar squaredNorm () const
SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
subcols (Index start, Index size)
const SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
subcols (Index start, Index size) const
SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
subrows (Index start, Index size)
const SparseInnerVectorSet
< Transpose< MatrixType >
, Dynamic
subrows (Index start, Index size) const
void subTo (Dest &dst) const
Scalar sum () const
Matrix< Scalar,
RowsAtCompileTime,
ColsAtCompileTime
toDense () const
Transpose< Transpose
< MatrixType > > 
transpose ()
const Transpose< const
Transpose< MatrixType > > 
transpose () const
const SparseTriangularView
< Transpose< MatrixType >
, Mode > 
triangularView () const
SparseSymmetricPermutationProduct
< Transpose< MatrixType >
, Upper|Lower
twistedBy (const PermutationMatrix< Dynamic, Dynamic, Index > &perm) const
const CwiseUnaryOp
< CustomUnaryOp, const
Transpose< MatrixType > > 
unaryExpr (const CustomUnaryOp &func=CustomUnaryOp()) const
 Apply a unary operator coefficient-wise.
const CwiseUnaryView
< CustomViewOp, const
Transpose< MatrixType > > 
unaryViewExpr (const CustomViewOp &func=CustomViewOp()) const

Protected Member Functions

Transpose< MatrixType > & assign (const OtherDerived &other)
void assignGeneric (const OtherDerived &other)

Protected Attributes

bool m_isRValue

Member Typedef Documentation

typedef internal::conditional<NumTraits<Scalar>::IsComplex, CwiseUnaryOp<internal::scalar_conjugate_op<Scalar>, Eigen::Transpose<const Transpose< MatrixType > > >, Transpose<const Transpose< MatrixType > > >::type AdjointReturnType
inherited
typedef EigenBase<Transpose< MatrixType > > Base
inherited
typedef internal::traits<Transpose< MatrixType > >::Index Index
inherited
typedef internal::add_const_on_value_type_if_arithmetic< typename internal::packet_traits<Scalar>::type >::type PacketReturnType
inherited
typedef internal::packet_traits<Scalar>::type PacketScalar
inherited
typedef internal::traits<Transpose< MatrixType > >::Scalar Scalar
inherited
typedef SparseMatrixBase StorageBaseType
inherited
typedef internal::traits<Transpose< MatrixType > >::StorageKind StorageKind
inherited

Member Enumeration Documentation

anonymous enum
inherited

Member Function Documentation

void addTo ( Dest &  dst) const
inlineinherited
const AdjointReturnType adjoint ( ) const
inlineinherited
void applyThisOnTheLeft ( Dest &  dst) const
inlineinherited
void applyThisOnTheRight ( Dest &  dst) const
inlineinherited
Transpose< MatrixType > & assign ( const OtherDerived &  other)
inlineprotectedinherited
void assignGeneric ( const OtherDerived &  other)
inlineprotectedinherited
const CwiseBinaryOp<CustomBinaryOp, const Transpose< MatrixType > , const OtherDerived> binaryExpr ( const Eigen::SparseMatrixBase< OtherDerived > &  other,
const CustomBinaryOp &  func = CustomBinaryOp() 
) const
inlineinherited
Returns:
an expression of the difference of *this and other
Note:
If you want to substract a given scalar from all coefficients, see Cwise::operator-().
See also:
class CwiseBinaryOp, operator-=()
Returns:
an expression of the sum of *this and other
Note:
If you want to add a given scalar to all coefficients, see Cwise::operator+().
See also:
class CwiseBinaryOp, operator+=()
Returns:
an expression of a custom coefficient-wise operator func of *this and other

The template parameter CustomBinaryOp is the type of the functor of the custom operator (see class CwiseBinaryOp for an example)

Here is an example illustrating the use of custom functors:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template binary functor
template<typename Scalar> struct MakeComplexOp {
EIGEN_EMPTY_STRUCT_CTOR(MakeComplexOp)
typedef complex<Scalar> result_type;
complex<Scalar> operator()(const Scalar& a, const Scalar& b) const { return complex<Scalar>(a,b); }
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random(), m2 = Matrix4d::Random();
cout << m1.binaryExpr(m2, MakeComplexOp<double>()) << endl;
return 0;
}

Output:

   (0.68,0.271)  (0.823,-0.967) (-0.444,-0.687)   (-0.27,0.998)
 (-0.211,0.435) (-0.605,-0.514)  (0.108,-0.198) (0.0268,-0.563)
 (0.566,-0.717)  (-0.33,-0.726) (-0.0452,-0.74)  (0.904,0.0259)
  (0.597,0.214)   (0.536,0.608)  (0.258,-0.782)   (0.832,0.678)
See also:
class CwiseBinaryOp, operator+(), operator-(), cwiseProduct()
internal::cast_return_type<Transpose< MatrixType > ,const CwiseUnaryOp<internal::scalar_cast_op<typename internal::traits<Transpose< MatrixType > >::Scalar, NewType>, const Transpose< MatrixType > > >::type cast ( ) const
inlineinherited
Returns:
an expression of *this with the Scalar type casted to NewScalar.

The template parameter NewScalar is the type we are casting the scalars to.

See also:
class CwiseUnaryOp
SparseInnerVectorSet<Transpose< MatrixType > ,1> col ( Index  j)
inherited
Returns:
the i-th column of the matrix *this. For column-major matrix only.
const SparseInnerVectorSet<Transpose< MatrixType > ,1> col ( Index  j) const
inherited
Returns:
the i-th column of the matrix *this. For column-major matrix only. (read-only version)
Index cols ( void  ) const
inlineinherited
Returns:
the number of columns.
See also:
rows()

Reimplemented from EigenBase< Transpose< MatrixType > >.

ConjugateReturnType conjugate ( ) const
inlineinherited
Returns:
an expression of the complex conjugate of *this.
See also:
adjoint()
Transpose< MatrixType > & const_cast_derived ( ) const
inlineinherited
const Transpose< MatrixType > & const_derived ( ) const
inlineinherited
const CwiseUnaryOp<internal::scalar_abs_op<Scalar>, const Transpose< MatrixType > > cwiseAbs ( ) const
inlineinherited
Returns:
an expression of the coefficient-wise absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs() << endl;

Output:

2 4 6
5 1 0
See also:
cwiseAbs2()
const CwiseUnaryOp<internal::scalar_abs2_op<Scalar>, const Transpose< MatrixType > > cwiseAbs2 ( ) const
inlineinherited
Returns:
an expression of the coefficient-wise squared absolute value of *this

Example:

MatrixXd m(2,3);
m << 2, -4, 6,
-5, 1, 0;
cout << m.cwiseAbs2() << endl;

Output:

 4 16 36
25  1  0
See also:
cwiseAbs()
const CwiseBinaryOp<std::equal_to<Scalar>, const Transpose< MatrixType > , const OtherDerived> cwiseEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns:
an expression of the coefficient-wise == operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are equal: " << count << endl;

Output:

Comparing m with identity matrix:
1 1
0 1
Number of coefficients that are equal: 3
See also:
cwiseNotEqual(), isApprox(), isMuchSmallerThan()
const CwiseUnaryOp<std::binder1st<std::equal_to<Scalar> >, const Transpose< MatrixType > > cwiseEqual ( const Scalar s) const
inlineinherited
Returns:
an expression of the coefficient-wise == operator of *this and a scalar s
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().
See also:
cwiseEqual(const MatrixBase<OtherDerived> &) const
const CwiseUnaryOp<internal::scalar_inverse_op<Scalar>, const Transpose< MatrixType > > cwiseInverse ( ) const
inlineinherited
Returns:
an expression of the coefficient-wise inverse of *this.

Example:

MatrixXd m(2,3);
m << 2, 0.5, 1,
3, 0.25, 1;
cout << m.cwiseInverse() << endl;

Output:

0.5 2 1
0.333 4 1
See also:
cwiseProduct()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Transpose< MatrixType > , const OtherDerived> cwiseMax ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns:
an expression of the coefficient-wise max of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMax(w) << endl;

Output:

4
3
4
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_max_op<Scalar>, const Transpose< MatrixType > , const ConstantReturnType> cwiseMax ( const Scalar other) const
inlineinherited
Returns:
an expression of the coefficient-wise max of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Transpose< MatrixType > , const OtherDerived> cwiseMin ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns:
an expression of the coefficient-wise min of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseMin(w) << endl;

Output:

2
2
3
See also:
class CwiseBinaryOp, max()
const CwiseBinaryOp<internal::scalar_min_op<Scalar>, const Transpose< MatrixType > , const ConstantReturnType> cwiseMin ( const Scalar other) const
inlineinherited
Returns:
an expression of the coefficient-wise min of *this and scalar other
See also:
class CwiseBinaryOp, min()
const CwiseBinaryOp<std::not_equal_to<Scalar>, const Transpose< MatrixType > , const OtherDerived> cwiseNotEqual ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns:
an expression of the coefficient-wise != operator of *this and other
Warning:
this performs an exact comparison, which is generally a bad idea with floating-point types. In order to check for equality between two vectors or matrices with floating-point coefficients, it is generally a far better idea to use a fuzzy comparison as provided by isApprox() and isMuchSmallerThan().

Example:

MatrixXi m(2,2);
m << 1, 0,
1, 1;
cout << "Comparing m with identity matrix:" << endl;
cout << m.cwiseNotEqual(MatrixXi::Identity(2,2)) << endl;
int count = m.cwiseNotEqual(MatrixXi::Identity(2,2)).count();
cout << "Number of coefficients that are not equal: " << count << endl;

Output:

Comparing m with identity matrix:
0 0
1 0
Number of coefficients that are not equal: 1
See also:
cwiseEqual(), isApprox(), isMuchSmallerThan()
const EIGEN_SPARSE_CWISE_PRODUCT_RETURN_TYPE cwiseProduct ( const MatrixBase< OtherDerived > &  other) const
inlineinherited
const CwiseBinaryOp<internal::scalar_quotient_op<Scalar>, const Transpose< MatrixType > , const OtherDerived> cwiseQuotient ( const Eigen::SparseMatrixBase< OtherDerived > &  other) const
inlineinherited
Returns:
an expression of the coefficient-wise quotient of *this and other

Example:

Vector3d v(2,3,4), w(4,2,3);
cout << v.cwiseQuotient(w) << endl;

Output:

0.5
1.5
1.33
See also:
class CwiseBinaryOp, cwiseProduct(), cwiseInverse()
const CwiseUnaryOp<internal::scalar_sqrt_op<Scalar>, const Transpose< MatrixType > > cwiseSqrt ( ) const
inlineinherited
Returns:
an expression of the coefficient-wise square root of *this.

Example:

Vector3d v(1,2,4);
cout << v.cwiseSqrt() << endl;

Output:

1
1.41
2
See also:
cwisePow(), cwiseSquare()
Transpose< MatrixType > & derived ( )
inlineinherited
Returns:
a reference to the derived object
const Transpose< MatrixType > & derived ( ) const
inlineinherited
Returns:
a const reference to the derived object
Scalar dot ( const MatrixBase< OtherDerived > &  other) const
inherited
Scalar dot ( const SparseMatrixBase< OtherDerived > &  other) const
inherited
const EIGEN_CWISE_PRODUCT_RETURN_TYPE ( Transpose< MatrixType >  ,
OtherDerived   
) const
inlineinherited
Returns:
an expression of the Schur product (coefficient wise product) of *this and other

Example:

Matrix3i a = Matrix3i::Random(), b = Matrix3i::Random();
Matrix3i c = a.cwiseProduct(b);
cout << "a:\n" << a << "\nb:\n" << b << "\nc:\n" << c << endl;

Output:

a:
 7  6 -3
-2  9  6
 6 -6 -5
b:
 1 -3  9
 0  0  3
 3  9  5
c:
  7 -18 -27
  0   0  18
 18 -54 -25
See also:
class CwiseBinaryOp, cwiseAbs2
const internal::eval<Transpose< MatrixType > >::type eval ( ) const
inlineinherited
Returns:
the matrix or vector obtained by evaluating this expression.

Notice that in the case of a plain matrix or vector (not an expression) this function just returns a const reference, in order to avoid a useless copy.

void evalTo ( Dest &  dst) const
inlineinherited
void evalTo ( MatrixBase< DenseDerived > &  dst) const
inlineinherited
const ImagReturnType imag ( ) const
inlineinherited
Returns:
an read-only expression of the imaginary part of *this.
See also:
real()
NonConstImagReturnType imag ( )
inlineinherited
Returns:
a non const expression of the imaginary part of *this.
See also:
real()
Index innerSize ( ) const
inlineinherited
Returns:
the size of the inner dimension according to the storage order, i.e., the number of rows for a columns major matrix, and the number of cols otherwise
SparseInnerVectorSet<Transpose< MatrixType > ,1> innerVector ( Index  outer)
inherited
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const SparseInnerVectorSet<Transpose< MatrixType > ,1> innerVector ( Index  outer) const
inherited
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> innerVectors ( Index  outerStart,
Index  outerSize 
)
inherited
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major).
const SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> innerVectors ( Index  outerStart,
Index  outerSize 
) const
inherited
Returns:
the outer -th column (resp. row) of the matrix *this if *this is col-major (resp. row-major). Read-only.
bool isApprox ( const SparseMatrixBase< OtherDerived > &  other,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const
inlineinherited
bool isApprox ( const MatrixBase< OtherDerived > &  other,
RealScalar  prec = NumTraits<Scalar>::dummy_precision() 
) const
inlineinherited
bool isRValue ( ) const
inlineinherited
bool isVector ( ) const
inlineinherited
Returns:
true if either the number of rows or the number of columns is equal to 1. In other words, this function returns
rows()==1 || cols()==1
See also:
rows(), cols(), IsVectorAtCompileTime.
Transpose< MatrixType > & markAsRValue ( )
inlineinherited
SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> middleCols ( Index  start,
Index  size 
)
inherited
Returns:
the i-th column of the matrix *this. For column-major matrix only.
const SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> middleCols ( Index  start,
Index  size 
) const
inherited
Returns:
the i-th column of the matrix *this. For column-major matrix only. (read-only version)
SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> middleRows ( Index  start,
Index  size 
)
inherited
Returns:
the i-th row of the matrix *this. For row-major matrix only.
const SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> middleRows ( Index  start,
Index  size 
) const
inherited
Returns:
the i-th row of the matrix *this. For row-major matrix only. (read-only version)
Index nonZeros ( ) const
inline
Returns:
the number of nonzero coefficients which is in practice the number of stored coefficients.

Reimplemented from SparseMatrixBase< Transpose< MatrixType > >.

RealScalar norm ( ) const
inherited
const ScalarMultipleReturnType operator* ( const Scalar scalar) const
inlineinherited
Returns:
an expression of *this scaled by the scalar factor scalar
const ScalarMultipleReturnType operator* ( const RealScalar &  scalar) const
inherited
const CwiseUnaryOp<internal::scalar_multiple2_op<Scalar,std::complex<Scalar> >, const Transpose< MatrixType > > operator* ( const std::complex< Scalar > &  scalar) const
inlineinherited

Overloaded for efficient real matrix times complex scalar value

const SparseSparseProductReturnType<Transpose< MatrixType > ,OtherDerived>::Type operator* ( const SparseMatrixBase< OtherDerived > &  other) const
inherited
Returns:
an expression of the product of two sparse matrices. By default a conservative product preserving the symbolic non zeros is performed. The automatic pruning of the small values can be achieved by calling the pruned() function in which case a totally different product algorithm is employed:
C = (A*B).pruned(); // supress numerical zeros (exact)
C = (A*B).pruned(ref);
C = (A*B).pruned(ref,epsilon);
where ref is a meaningful non zero reference value.
const SparseDiagonalProduct<Transpose< MatrixType > ,OtherDerived> operator* ( const DiagonalBase< OtherDerived > &  other) const
inherited
const SparseDenseProductReturnType<Transpose< MatrixType > ,OtherDerived>::Type operator* ( const MatrixBase< OtherDerived > &  other) const
inherited

sparse * dense (returns a dense object unless it is an outer product)

Transpose< MatrixType > & operator*= ( const Scalar other)
inherited
Transpose< MatrixType > & operator*= ( const SparseMatrixBase< OtherDerived > &  other)
inherited
Transpose< MatrixType > & operator+= ( const SparseMatrixBase< OtherDerived > &  other)
inherited
const CwiseUnaryOp<internal::scalar_opposite_op<typename internal::traits<Transpose< MatrixType > >::Scalar>, const Transpose< MatrixType > > operator- ( ) const
inlineinherited
Returns:
an expression of the opposite of *this
Transpose< MatrixType > & operator-= ( const SparseMatrixBase< OtherDerived > &  other)
inherited
const CwiseUnaryOp<internal::scalar_quotient1_op<typename internal::traits<Transpose< MatrixType > >::Scalar>, const Transpose< MatrixType > > operator/ ( const Scalar scalar) const
inlineinherited
Returns:
an expression of *this divided by the scalar value scalar
Transpose< MatrixType > & operator/= ( const Scalar other)
inherited
Index outerSize ( ) const
inlineinherited
Returns:
the size of the storage major dimension, i.e., the number of columns for a columns major matrix, and the number of rows otherwise
RealReturnType real ( ) const
inlineinherited
Returns:
a read-only expression of the real part of *this.
See also:
imag()
NonConstRealReturnType real ( )
inlineinherited
Returns:
a non const expression of the real part of *this.
See also:
imag()
SparseInnerVectorSet<Transpose< MatrixType > ,1> row ( Index  i)
inherited
Returns:
the i-th row of the matrix *this. For row-major matrix only.
const SparseInnerVectorSet<Transpose< MatrixType > ,1> row ( Index  i) const
inherited
Returns:
the i-th row of the matrix *this. For row-major matrix only. (read-only version)
Index rows ( void  ) const
inlineinherited
Returns:
the number of rows.
See also:
cols()

Reimplemented from EigenBase< Transpose< MatrixType > >.

const SparseSelfAdjointView<Transpose< MatrixType > , UpLo> selfadjointView ( ) const
inlineinherited
SparseSelfAdjointView<Transpose< MatrixType > , UpLo> selfadjointView ( )
inlineinherited
Index size ( ) const
inlineinherited
Returns:
the number of coefficients, which is rows()*cols().
See also:
rows(), cols().

Reimplemented from EigenBase< Transpose< MatrixType > >.

RealScalar squaredNorm ( ) const
inherited
SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> subcols ( Index  start,
Index  size 
)
inherited
const SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> subcols ( Index  start,
Index  size 
) const
inherited
SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> subrows ( Index  start,
Index  size 
)
inherited
const SparseInnerVectorSet<Transpose< MatrixType > ,Dynamic> subrows ( Index  start,
Index  size 
) const
inherited
void subTo ( Dest &  dst) const
inlineinherited
Scalar sum ( ) const
inherited
Matrix<Scalar,RowsAtCompileTime,ColsAtCompileTime> toDense ( ) const
inlineinherited
Transpose<Transpose< MatrixType > > transpose ( )
inlineinherited
const Transpose<const Transpose< MatrixType > > transpose ( ) const
inlineinherited
const SparseTriangularView<Transpose< MatrixType > , Mode> triangularView ( ) const
inlineinherited
SparseSymmetricPermutationProduct<Transpose< MatrixType > ,Upper|Lower> twistedBy ( const PermutationMatrix< Dynamic, Dynamic, Index > &  perm) const
inlineinherited
Returns:
an expression of P H P^-1 where H is the matrix represented by *this
const CwiseUnaryOp<CustomUnaryOp, const Transpose< MatrixType > > unaryExpr ( const CustomUnaryOp &  func = CustomUnaryOp()) const
inlineinherited

Apply a unary operator coefficient-wise.

Parameters:
[in]funcFunctor implementing the unary operator
Template Parameters:
CustomUnaryOpType of func
Returns:
An expression of a custom coefficient-wise unary operator func of *this

The function ptr_fun() from the C++ standard library can be used to make functors out of normal functions.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define function to be applied coefficient-wise
double ramp(double x)
{
if (x > 0)
return x;
else
return 0;
}
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(ptr_fun(ramp)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
  0.68  0.823      0      0
     0      0  0.108 0.0268
 0.566      0      0  0.904
 0.597  0.536  0.258  0.832

Genuine functors allow for more possibilities, for instance it may contain a state.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp
const CwiseUnaryView<CustomViewOp, const Transpose< MatrixType > > unaryViewExpr ( const CustomViewOp &  func = CustomViewOp()) const
inlineinherited
Returns:
an expression of a custom coefficient-wise unary operator func of *this

The template parameter CustomUnaryOp is the type of the functor of the custom unary operator.

Example:

#include <Eigen/Core>
#include <iostream>
using namespace Eigen;
using namespace std;
// define a custom template unary functor
template<typename Scalar>
struct CwiseClampOp {
CwiseClampOp(const Scalar& inf, const Scalar& sup) : m_inf(inf), m_sup(sup) {}
const Scalar operator()(const Scalar& x) const { return x<m_inf ? m_inf : (x>m_sup ? m_sup : x); }
Scalar m_inf, m_sup;
};
int main(int, char**)
{
Matrix4d m1 = Matrix4d::Random();
cout << m1 << endl << "becomes: " << endl << m1.unaryExpr(CwiseClampOp<double>(-0.5,0.5)) << endl;
return 0;
}

Output:

   0.68   0.823  -0.444   -0.27
 -0.211  -0.605   0.108  0.0268
  0.566   -0.33 -0.0452   0.904
  0.597   0.536   0.258   0.832
becomes: 
    0.5     0.5  -0.444   -0.27
 -0.211    -0.5   0.108  0.0268
    0.5   -0.33 -0.0452     0.5
    0.5     0.5   0.258     0.5
See also:
class CwiseUnaryOp, class CwiseBinaryOp

Member Data Documentation

bool m_isRValue
protectedinherited

The documentation for this class was generated from the following file: